Please use this identifier to cite or link to this item: http://dspace.chitkarauniversity.edu.in/xmlui/handle/123456789/539
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDube, Madhulika-
dc.date.accessioned2022-07-12T05:57:17Z-
dc.date.available2022-07-12T05:57:17Z-
dc.date.issued2014-09-20-
dc.identifier.issn2278-9561-
dc.identifier.issn2278-957X-
dc.identifier.urihttp://dspace.chitkarauniversity.edu.in/xmlui/handle/123456789/539-
dc.description.abstractRidge regression is one of the most widely used biased estimators in the presence of multicollinearity, preferred over unbiased ones since they have a larger probability of being closer to the true parametric value. Being the modification of the least squares method it introduces a biasing parameter to reduce the length of the parameter under study. As these biasing parameters depend upon the unknown quantities, extensive work has been carried out by several authors to work out the best one. Owing to the fact that over the years large numbers of biasing parameters have been proposed and studied, this article presents an annotated bibliography along with the review on various biasing parameter available.en_US
dc.language.isoenen_US
dc.relation.ispartofseries;CHAENG/2013/49583-
dc.subjectOrdinary Least Squares Estimatoren_US
dc.subjectMulticollinearityen_US
dc.titleA Review on the Biasing Parameters of Ridge Regression Estimator in LRMen_US
dc.typeArticleen_US
Appears in Collections:Vol. 3 No. 1 (2014)

Files in This Item:
File Description SizeFormat 
122-Article Text-255-1-10-20190531.pdf374.16 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.