Please use this identifier to cite or link to this item:
http://dspace.chitkarauniversity.edu.in/xmlui/handle/123456789/477
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Hathiwala, Gautam | - |
dc.contributor.author | V. Shah, Devbhadra | - |
dc.date.accessioned | 2022-06-07T10:47:13Z | - |
dc.date.available | 2022-06-07T10:47:13Z | - |
dc.date.issued | 2019-05-23 | - |
dc.identifier.issn | 2278-9561 | - |
dc.identifier.issn | 2278-957X | - |
dc.identifier.uri | http://dspace.chitkarauniversity.edu.in/xmlui/handle/123456789/477 | - |
dc.description.abstract | The sequence {Tn} of Tetranacci numbers is defined by recurrence relation Tn= Tn-1 + Tn-2 + Tn-3 + Tn-4; n≥4 with initial condition T0=T1=T2=0 and T3=1. In this Paper, we obtain the explicit formulla-Binet-type formula for Tn by two different methods. We use the concept of Eigen decomposition as well as of generating functions to obtain the result. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | ;2278-9561 ISSN Online 2278-957X RNI No. CHAENG/2013/49583 | - |
dc.subject | Binet formula | en_US |
dc.subject | Fibonacci sequence | en_US |
dc.subject | Tetranacci sequence | en_US |
dc.title | Binet – Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods | en_US |
dc.type | Article | en_US |
Appears in Collections: | Vol. 6 No. 1 (2017) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
26-Article Text-108-1-10-20190523.pdf | 370.99 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.