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CHAPTER-05 

THE VIBRATIONS OF ELECTRO-MAGNETO NONLOCAL 

THERMOELASTIC SPHERE WITH VOIDS AND THREE-

PHASE-LAG MODEL 

5.1 Introduction 

  In this chapter the transversely isotropic electro-magneto nonlocal thermoelastic 

hollow sphere with voids material has been addressed for free vibration analysis. By using 

time harmonics, the stress-strain relations and modeling equations have been transformed 

into ordinary differential equations. The unknown field functions have been eliminated by 

using matrix elimination technique. In order to investigate the vibration analysis, the 

relations of frequency equations have been solved for assumed boundary conditions. To 

authenticate the phase-lag effects on the model of generalized thermoelasticity, the 

analytical results have been shown graphically in absence/presence of magnetic field. The 

magneto-thermoelastic solid materials with voids in respect of analysis of free vibrations 

have many applications such as designers of new materials in practical situations, acoustics, 

and oil prospecting etc. 

5.2 The Basic Fundamental Equations and Mathematical Model 

In this chapter we consider a thermally conducted nonlocal magneto-thermoelastic 

transversely isotropic elastic hollow sphere/disk with voids material of three-phase-lag (TPL) 

model in the reference of generalized thermoelasticity with the domain a r a   . The field 

components are assumed as temperature component ( , )T T r t , concentration of voids 

volume fraction ( , )r t  and displacement vector r(u ,u , u )=(u(r,t), 0,0) u = . The 

strain components of sphere are ,rr

u u
e e e

r r
 


  


, 0r re e e     . The Maxwell’s 

equations and the generalized Ohm’s law have been generated by electro-magnetic field in 

the absence of charge density and displacement current as: 

  , 0 , ( )
e

u  
t

 


      


B
E = H = J , B H , .B J = E + B .                             

(5.1) 
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Here the strength of magnetic field is 
0

hH = H , where 
0 0

(0 , 0 , )HH , J is current 

density which is neglected due to small effect of temperature gradient, h is perturbation of 

magnetic field which is considered so small that the product of displacement vector ( )u and 

perturbation of magnetic field ( )h and their derivatives neglected due to linearization of 

basic equations. Therefore, following Dhaliwal and Singh (1980) and  Cowin and Nunziato 

(1983), the nonlocal stress-strain temperature relations and governing fundamental 

equations without heat sources, body forces and free from voids concentration are given as : 

2
2 2

, 2
(1 )ij j i

u
F

t
  


   


,       (5.2) 

2
2 2 2

1 2 2
(1 ) 0be MT

t t


       

  
          

  
,  (5.3) 
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2
2 *
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2

1
1

q

q e r

T v

t u u
t C T T MT

t t t r r

T
r K t K t

r r r t t t

   
      

              

          
         

          

 ,  (5.4) 

2 2(1 ) ;( , , )
ij

L
ij ij kl ij ijc e b T i j r            ,   (5.5) 

Here ; ( , , )ij i j r   is the components of thermal modulii where

11 12 1 13 3
( )

r
c c c


       , ij and ; ( , , )ije i j r   are stresses and strains; 

1 3 T
   

is coefficient of linear thermal expansion (Dhaliwal and Singh (1980)), T is assumed as 

increase in the reference temperature 0T  of the medium, 
ij

b b are the voids parameters,

 is the void volume fraction,   is the equilibrated inertia, 1 2
,  are the material constants 

because of presence of voids, , ,T q Vt t t represent the Phase-lags temperature gradient, heat 

flux, thermal displacement gradient respectively. 
i

F is the body force F = (J B) . If  is 

Poisson ratio and E is Young’s modulus, then elastic constants are 

 
11 12

(1 )
,

(1 )(1 2 ) (1 )(1 2 )

E E
c c

 

   


 

   
, 

and Laplacian operator is 
2

2

2

2

r r r

 
  

 
. 

Substituting the values of stresses from equation (5.5) in equation (5.2) we obtained as 
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2 2
2 2

, 2 2 2

11 11 11 11

1 2 2
(1 ) 0r

r r

u u u u b T

c r r r r c t c r c r

 


     
        

     
F . (5.6) 

The analysis has been considered to be restricted to thermoelastic sphere in radial direction, 

then using equations (5.1) in Lorentz force i.e. 
,

( )
r r

F  J B in radial direction, we obtained 

2

0

2
0 , 0, r e

u u
F F F H

r r
  


   



 
 
 

.     (5.7) 

Substituting Lorentz force value from equation (5.7) in equation (5.6), we get 

2 2 2 2 2

0

2 2 2

11 11 11 11

2 2 2 (1 )
0e r

H u u u u u u b T

c r r r r r r r c t c r c r

              
         

         
 , (5.8) 

Taking divergence to both sides of equation (5.8), we obtained  

2 2 2

2 2 2

2

11 11 11

(1 )
0r

h

e b
R e T

c t c c

 


  
      


,    (5.9) 

where 
2

2 0

2

11

1
( ), 1 e

h

H
e r u R

r r c


  


. 

The traction free isothermal and thermally insulated boundary conditions of TPL model of 

generalized nonlocal magneto-thermoelastic hollow sphere with voids have been considered 

with domain a r a   given below: 

0 , 0 , 0 ; ,

0 , 0 , 0 ; ,

rr

rr

T
r a r a

r

T r a r a

  

  


    



    







,     (5.10) 

 

5.3 Solution of the Mathematical Model 

We set up the following non-dimensional parameters  

0

11 0

2 2
0012 11 2

0 2 2
11 1 11 11 11

1 1
( , , ) ( , , ) , ( , , , ) ( , , , ), ( , ) ( , ) , ,

, , , , , , ,

T q v T q v RR rr

r
R

c T
u r u r t t t t

a a c T

TTc c c a b b
c c b b

c a a c c c

 




          


    

  














     


       



.  (5.11) 
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The dashes have been suppressed for convenience. Using non-dimensional constants as 

proposed in equation (5.11) in equations (5.3) - (5.5) and (5.9), we attain equations in non-

dimensional form: 

2

2 2 2 2 2

0 2
(1 )

h R R R R R

e
R e b    



 
       


,                        (5.12) 

2

2 2 2

2 1 3 0 2 2

1

1
1 (1 )

R R
a e a a


    

  

 
        

 

 
 
 

,                (5.13) 

 
22 3 4 2

* 2

4 52 3 4 2 2

1
1

2

q

q T v
a e a K r

r r r

 
    

     

       
        

       

         
         

        
,  (5.14) 
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L
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L

R

U
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r

U
c e c b

r
  

     

     

       

       







,    (5.15) 

where 

22 2 3

*0 111

1 2 3 4 5 2
, , , , , eT

R

M T c Ca b Mca
a a a a a
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 

 


    

 



 
     


, 

2*

2 2 2 20

1 2 2

11 11

1 1
, , , , ( ) ,r

T R

e

TaK a
K e r U r

cK c C c c r r r r r

 
 

 



   
       

  

   
   
   

. 

Now we propose the time harmonics as  

e e

exp(iΩτ) 

 



   
   
   
   
   

.        (5.16) 

Here  
a

c


   is the circular frequency. Using equation (5.16) in equations (5.12–5.14), we 

get 

2 2 2

11 12 13

2

21 22 23

2

31 32 33

( ) 0

( ) 0

( ) 0

R R R

R

R

A A A e

A A A

A A A





    

   

 

     
     
     

    
    

,    (5.17) 
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where  

*2

32 2

11 12 13 21 22 232 2 2 2 2 2 * * *
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h h h
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A A A A A A
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
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     
     
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2 2 2 **2 2 *
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1 2 31 32 332 2 * * *
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* 2 * * * 2 * * 2 *
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a a A A A
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a a a a a
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,
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     

   

  

 

           

     

 
 
   

For the solution of equations (5.17), we have non-trivial solution as given:  

6 * 4 * 2 *
( )( , , ) 0

R R R
L M N e         ,     (5.18) 

where   *

33 11 22 13 31 12 21
L A A A A A A A     , 

 *

12 21 33 13 21 32 13 31 22 12 23 31 11 33 11 22 23 32 22 33
M A A A A A A A A A A A A A A A A A A A A        , 

*

11 23 33 11 22 33
N A A A A A A  . 

Because the solution of equation (5.18) is noted to be bounded for r  , therefore for 

the bounded conditions, the  roots must be real and positive, i.e. 
1 2 3

Re( ) 0, ,k k k  . 

Therefore, the roots ; 1, 2, 3
i

k i   of equation (5.18) are: 

     * * *

1 1 2 2 1 2 2 3 1 2 2

1 1 1
2 sin , ( 3 cos sin ) , ( 3 cos sin )

3 3 3
k p p L k L p p p k L p p p        , 

where, 

*3 * * *

*2 * 1

*31 3 2 3

2 9 27 1
3 , , sin ( )

32

L L M N
p L M p p p

L


 

     . 

Since on splitting the equation (5.18), we find the equations in Bessel form and the solution 

might be written as 

 
3

1/2 1/2
1

1
1

( ) ( )
i i i i i

i

i

e R PJ k r QY k r
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S






 



   
   
   
   
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,        (5.19) 
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where,  

22

22 3113 21 23 11 23

4 2 4 2

13 22 12 23 33 22 33

31 21 32

13 22 23 32

,
)

( )

( ) ( ( )

ii

i i

i i i i

Ak A A A A A
R S

A k k A A A A A

A k A A A

k A A k A A A


  

 

 

   
. 

Here , ; 1, 2, 3
i i

P Q i  are constants that depend on  only. Here 
1/2 1/2

andJ Y are Bessel 

functions of First and Second kinds of order half.  Resolving cubical dilation ( )e from second 

part of equation (5.19) for displacementu , we obtain 

 
3

3/2 3/2
1

1 1
( ) ( )

i i i i i
i

i

u R PJ k r Q Y k r
kr 

  .     (5.20) 

5.4  Frequency Relations 

For the analysis of stress free vibrations of three-phase-lag model, the frequency 

equations are obtained by substitution of equations (5.19–5.20) in the boundary conditions 

given in equations (5.10), at inner and outer radii 1r  and r  .  On simplification of these 

equations, we obtain a system of homogenous equations given below: 

6 6 6 1( ) ( ) 0 ; , 1 6
ij

i j to
     ,      (5.21) 

where 
1 2 3 1 2 3

( , , , , , )
T

P P P Q Q Q  . From Equation (5.21) we obtain six homogeneous linear 

equations with six unknowns. Hence, for the non-trivial solution of equation (5.21), we must 

have 

0 ; , 1 6
ij

i j to   ,       (5.22) 

From equation (5.22) the constant parameters ; , 1 6
ij

i j to   have been defined in 

thermally insulated boundary conditions in set I and isothermal boundary conditions in set II 

given below:  

Set I: The parameters of ; , 1 6
ij

i j to  are  

 
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   

   
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5 3/2 5 3/2

( ) 2 ( 1) / ( ) ; , 1 to 3;

( ) 2 ( 1) / ( ) ; 1, 2, 3, 4,5, 6

; , 1, 2, 3; ; 1, 2, 3; 4,5, 6;

; , 1, 2, 3; ; 1, 2, 3; 4,5, 6

j i i i i i

j i i i i i

j i i j i i

j i i j i i
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Y k c k R Y k i j

S J k i j S Y k i j

k J k i j k Y k i j

     

      

      

        ;









. (5.23) 
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Set II: In this case, the elements of 1 2 3 4, , , ;j j j j j 1 to 6     , remain same as given 

in equation (5.23). The remaining elements of 5 6, ;j j j 1 to 6   in equation (5.22) are 

given below 

    5 1/2 5 1/2
; , 1,2,3, ; 1,2,3; 4,5,6;

j i j i
J k i j Y k i j       . (5.24) 

The constant elements of 2 4 6, , ; 1 6j j j j to    are obtained by inserting  along 

with
i

k , in elements of 1 3 5, , ; 1 6j j j j to    . 

5.5 Deduction of Analytical Results 

         If we assume
0

0  , then the present analysis is reduced to transversely isotropic TPL 

electro magneto thermoelastic voids hollow sphere. Again, if we thermal equilibrium has 

been established and the following constants are ignored, i.e. 0 0  , 

1 2 0b M        0q v Tt t t   , the present analysis is reduced to classical 

magneto-thermoelastic sphere. If the thermal and thermo-mechanical constants are 

removed 0R T T    , then the analysis has been reduced to transversely isotropic 

elastic sphere. 

5.6 Numerical Results and Discussion 

For the validation of analytical results, computations have been proposed for TPL 

model of magneto-thermoelastic hollow sphere with voids in nonlocal elasticity. The 

simulated results are performed for generalized thermoelastic models, i.e. Lord-Shulman 

(LS), dual-phase-lag (DPL), three-phase-lag (TPL) and coupled thermoelasticity (CTE) in 

absence/presence of magnetic fields for nonlocal voids thermoelastic hollow sphere by 

taking the normalized thickness of the disk 2.0  . For computation purpose the 

transversely isotropic material of single crystal of zinc thermoelastic solid with voids material 

has been assumed and its constant values are given in SI units (Chadwick and Seet (1970))  
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2 1 1 6 2 1 6 2 2
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1 2
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 

   
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     
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       
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      

  
2 10 2

, 1.13849 10 .b Nm


 

The magnetic field parameters have been assumed as 
7

4 10 / ,e H m    
8

0 10 /H A m  
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from Othman and Hilal (2017). The nonlocal parameter and three-phase-lag (TPL) parameter 

values have been considered as 0 2.3102 
 
and 0.05 , 0.07v Tt t  ,  

*
0.09 , 7.0qt K  . The numerically analyzed computations are employed to equation 

(5.22) for thermally insulated cases.  

The numerically analyzed values for the computations of frequency equation (5.22) of 

might be written as m m m

R I
i     . The real and imaginary parts have been considered 

as natural frequencies 
m

R R
   and dissipation factor m

I I
   correspondingly. The value 

m has been considered as mode number denoted the root of equation (5.22). The 

numerically simulated values have been presented graphically for TPL, DPL, LS and CTE 

theories of magneto nonlocal thermoelastic hollow sphere in absence and presence of 

magnetic field. The real part i.e. natural frequencies against mode number have been 

represented for nonlocal thermoelastic voids sphere with and without magnetic field at 

2.0  in Fig. 5.1(a–b). It is concluded from Fig. 5.1(a-b) that initially the variation of 

vibrations is low and with increasing values of m , the variation of vibrations go on 

increasing with increasing mode number.  

Fig. 5.2(a-b) has been presented for imaginary part i.e. dissipation factor ( )
I

 versus mode 

number ( )m for nonlocal thermoelastic voids sphere with and without magnetic field at 

2.0 . This is observed from Fig. 5.2 that initially dissipatioleft to right, the dissipated 

vibrations go on increasing. The frequency shift ( )
shift

  of transversely isotropic electro-

magneto generalized thermoelastic hollow sphere has been  
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Figure 5.1(a): Natural frequency ( )
R

 against mode number ( )m for TPL, DPL, LS and CTE 

models of nonlocal thermoelastic sphere with voids with magnetic field. 

 

Figure 5.1(b): Natural frequency ( )
R

 against mode number ( )m for TPL, DPL, LS and CTE 

models of nonlocal thermoelastic sphere with voids without magnetic field. 
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Figure 5.2(a): Dissipation ( )I versus mode number ( )m for TPL, DPL, LS and CTE models of 

nonlocal thermoelastic sphere with voids with magnetic field. 

 

Figure 5.2(b): Dissipation ( )I versus mode number ( )m for TPL, DPL, LS and CTE models of 

nonlocal thermoelastic sphere with voids without magnetic field. 
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Figure 5.3(a): Frequency shift ( )
shift

 versus mode number ( )m for TPL, DPL, LS and      

                CTE models of nonlocal thermoelastic sphere with voids with magnetic field. 

 

Figure 5.3(b): Frequency shift ( )
shift

 versus mode number ( )m for TPL, DPL, LS and 

CTE models of nonlocal thermoelastic sphere with voids without magnetic field. 
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calculated from Sharma et al. (2021b) as: 
*

( ) /M CTE CTE

shift R R R     , where *M  

assumes for TPL, DPL, LS models of generalized nonlocal thermoelastic sphere with voids, 

plotted for frequency shift ( )
shift

 against mode number ( )m at normalized thickness 

2.0  for in presence/absence of magnetic field. It is observed from Fig. 5.3(a–b) that the 

behavior of vibrations are low initially, attain peak values at 3.0 and 2.0m m   , with 

increasing values of m the vibrations go on decreasing to become linear at 4.0m  . This is 

noticed from all the figures that the vibrations are larger in case of TPL model in comparison 

with DPL, LS and CTE models of thermoelasticity. Also due to the effect of magnetic field the 

behavior is noted to be larger in absence of magnetic field in contrast to presence of 

magnetic field. 

5.7 Conclusions 

   The transversely isotropic nonlocal electro-magneto elastic hollow sphere with voids has 

been presented for TPL model of generalized thermoelasticity. The relations of frequency 

equations have been derived and examined computationally for analytical results. The 

effects of magnetic field clearly designates that the variations are larger in absence of 

magnetic field in contrast to presence of magnetic field. It is seen in first figure that 

dissipations and natural frequencies go on increasing with increasing mode number. This 

study may find useful applications for those researchers and scientists who are working in 

the field of seismology for drilling, mining in the earth’s crust and porous materials. 

 

 


