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CHAPTER-04 

VIBRATIONS OF PHASE-LAGS ON ELECTRO-

MAGNETO NONLOCAL ELASTIC SOLID WITH 

VOIDS IN GENERALIZED THERMOELASTIC 

CYLINDER/DISK 

4.1 Introduction 

In this chapter, the stress–strain–temperature relations, strain–displacement 

relations and governing equations have been addressed for electro-magneto 

transversely isotropic nonlocal elastic hollow cylinder with voids in the reference of 

three-phase-lag effect of heat conduction. The strength of the magnetic field proceeds 

in the direction of the z-axis of the hollow cylinder/disk. The simultaneous differential 

equations have been eliminated by applying elimination technique to obtain unknown 

field functions such as dilatation, equilibrated voids volume fraction, temperature, 

displacement and stresses. Free vibration analysis has been explored by applying 

stress free and thermally insulated/isothermal boundaries. Analytical results are 

verified by employing numerically analyzed results for unknown field functions and 

presented graphically for the vibrations of stress free field functions such as damping, 

frequencies and frequency-shift. The results have been authenticated by analyzing 

analytical and numerical results with existing literature with earlier published work. 

The study of present chapter based on three-phase-lag (TPL) model of generalized 

thermoelasticity may receive better approach to allow voids and relaxation time 

parameters, which have many applications in the field of science, technology and 

engineering. The study may also be useful in the area of seismology for mining and 

drilling in the earth’s crust. 

4.2 The basic fundamental equations and mathematical model  

Here a transversely isotropic nonlocal magneto-thermoelastic hollow cylinder 

with voids material of TPL model has been presented in the reference of generalized 

thermoelasticity. The inner and outer radii of hollow cylinder are assumed as 
I

R a , 

O
R a   with the domain a r a    and the surfaces are considered free from 
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internal and external mechanical/thermal loads. The hollow cylinder is considered 

perfectly conductive and initially at undisturbed state with uniform temperature
0

T . 

The strength of magnetic field H  and cylindrical coordinates ( , , )r z  proceeds in z

direction of the axis. The field components are displacement vector 
r z

(u ,u , u )


u =  

where 0 , 0, ( , )
z r

u u u u r t

   , concentration of voids volume fraction ( , )r t  and 

temperature component ( , )T T r t . Following Cowin and Nunziato(1983), Das et al. 

(2013) and Dhaliwal and Singh(1980), the Maxwell’s equations in the absence of 

charge density and displacement current, with the impact of electromagnetic field, the 

equation of motion, equation of voids equilibrated volume fraction, and heat 

conduction equation without body forces and heat sources are given as  

 

Figure 4.1 Geometry of the problem 

Strain-displacement relations 

, ,

1
( )

2
ij i j j i

e u u  ,         (4.1) 

where ; ( , , , )
ij

e i j r   are strain components, , 0 , 0)
r

(uu = is displacement vector. 

Local–nonlocal stress relations 

2

2

2

1
1 ( , , ).

L

ij ij
i j r

r rr

 
      



  
  
  

      (4.2) 
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Here the quantities having superscript " "L  stands for the local medium, 
0 0

e a  is non 

local parameter, where 
0a is internal characteristic length and 0e is material constant, 

; ( , , )
ij

i j r  are stress components, also
L

ij ij
   . 

Constitutive relations 

2

2

2

1
1

ij ij kl ij ij
c e b T

r rr
   

 
    



  
  
  

.      (4.3) 

Here ; ( , , )
ij

i j r   is the components of thermal modulii where

11 12 1 13 3
( )

r
c c c


       ; 

1 3 T
    is coefficient of linear thermal expansion 

(Dhaliwal and Singh (1980)), T is assumed as increase in the reference temperature
0

T  

of the medium,
ij

b b is the voids parameter,  is the void volume fraction. 

Modified Fourier’s law  

By introducing three phase-lags, namely thermal displacement gradient
vt , heat flux

qt and temperature gradient Tt , the classical Fourier law q K T   has been modified 

as given below: 

 *
( , ) ( , ) ( , )

i q T v
q P t t K T P t t K v P t t        ,     (4.4) 

where *,K K and v are thermal conductivity, additional material constant of 

characteristic theory, thermal displacement gradient, iq are the heat flux vector 

components. 

The entropy strain-temperature-voids relations 

0

e

ij ij

C
S T e M

T


     ,       (4.5) 

where   is mass density, S is entropy per unit mass, M  is thermo-void coupling 

parameter, 
e

C is specific heat at constant strain. 

The equilibrated force balance equation 

2 2

2

, 1 22 2

1
1

i j ij ij
h b e MT

r r tr t


    

   
       

  

    
   
   

.   (4.6) 
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The relation between volume fraction gradient and equilibrated stress vector 

,i ij ih   ,         (4.7) 

where   is the equilibrated inertia,
1 2
,  are the material constants of voids, 

ih is 

equilibrated stress vector, 
ij

   is the void parameters. 

The energy equation  

0 ,i i

S
T q

t



 


,        (4.8) 

where S is entropy per unit mass. 

Equation of small motion in tensor form 

2 2

2

, 2 2

1
1

ij j i

u
F

r rr t
  

  
   

 

  
  
  

.      (4.9) 

Here ;( , , )
i

i r zF  are the components of body force F = (J B) . If  is Poisson ratio 

and E is Young’s modulus, then elastic constants are 

11 12

(1 )
,

(1 )(1 2 ) (1 )(1 2 )

E E
c c

 

   


 

   
. 

The Maxwell’s equations  

The Maxwell’s equations have been generated by electro-magnetic field in the 

absence of charge density and displacement current as: 

, 0
e

, ,
t




     


B
E = H = J B H .B ,     (4.10) 

The generalized Ohm’s law in continua of deformation is 

( )
u

t






J = E + B .         (4.11) 

Here J is current density, which is neglected due to small effect of temperature 

gradient. The strength of magnetic field
0

hH = H , where
0 0

(0 , 0 , )HH , h is 

perturbation of magnetic field which is very small due to the product of u and h and 

their derivatives might be neglected due to linearization of basic equations. Therefore, 
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from equations (4.1)–(4.11), constitutive relations, the governing field equations are 

given as: 

2 2 2

2

2 2 2 2

11 11 11 11

1 1 1
1 0r

r

u u u u b T
,

r r r r c r r r t c r c r c

 


      
        

      

    
    

    
F ,     (4.12) 

2 2

2 2

1 2 2 2

1
1 0be MT

t r r r t


      

   
         

   

   
    
    

,  (4.13) 

22 3 4

0 02 3 4

2

*

2

2

1
1

q

q e r

T v

t u u
t C T T MT

t t t r r

T
r K t K t

r r r t t t


   

   
    

   

    
   

    

   
   

   

      
      

      

,   (4.14) 

2

2

11 122

2

2

12 112

1
1

1
1

rr r

u u
c c b T

r r r r r

u u
c c b T

r r r r r
 

   

   

  
     

  

  
     

  

  
   

   


   
      

.    (4.15) 

If the free vibration analysis is restricted to the transversely isotropic thermoelastic 

cylinder in radial direction, then using equations (4.10) and (4.11), the Lorentz force 

i.e. ( ),
r r

F  J B in radial direction (Das et al. (2013)) , we obtained 

2
0 , 0 , 0r e z

u u
F H F F

r r


 
    

 
,     (4.16) 

Substituting values of Lorentz force from equation (4.16) in equation (4.12), we get 

22 2 2 2

0

2 2 2

11 11 11 11

1 (1 )
0er

Hu u u u b T u u

r r r r c t c r c r c r r r

          
       

      

   
   
   

, (4.17) 

Taking divergence to both sides of equation (4.17) and rearranging it, we obtained  

2 2

2 2 2 2 20

2

11 11 11 11

1
1 ( ) (1 ) 0e r

H e b
ru T

c r r c t c c

 
 

 
         

 

   
   

  
,  (4.18) 

where 
2 1

r
r r r

 
 

 

 
 
 

. 
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The transversely isotropic TPL model generalized nonlocal magneto-thermoelastic 

hollow cylinder with voids material has been presumed to be undisturbed and at rest 

initially. Therefore, initial conditions are:  

( ,0) ( ,0) ( ,0)
0 , ( ,0) ( ,0) ( ,0) 0, at ,

u r r T r
u r r T r r a a

t t t


 

  
      

  
. (4.19) 

The TPL model of generalized nonlocal magneto-thermoelastic hollow cylinder with 

voids is applied to stress free and equilibrated void volume fraction, thermally 

insulated/isothermal boundary conditions of domain a r a  . Hence, 

mathematically, we have: 

Set I: 0 , 0 , 0 ; ,
rr

T
r a r a

r
  


    


.    (4.20) 

Set II: 0 , 0 , 0 ; ,
rr

T r a r a       .                         (4.21) 

4.3 Solution of the mathematical model 

We set up the following non-dimensional parameters  

0

11 0

2 2

0 0 12 11 2

02 2

11 11 11 11 1

1 1
( , ) ( , ), ( , , ) ( , , ), ( , , , ) ( , , , ), ,

, , , , , , , ,

XX rr T q v T q v

r

R

c T
U X u r t t t t

c a a T

T T c ca b b c
b b c c

c c c c a a

 





          

  
    

  







   


       










.   (4.22) 

Using non-dimensional quantities as proposed in equation (4.22) in equations. (4.13) - 

(4.15) and (4.18), we attain following equations in non-dimensional form: 

0

0

L

XX XX R

L

U U
c b

X X

U U
c b

X X
  

    

    






    




    










,       (4.23) 

2

2 2 2 2 2

0 2
(1 )

h X X R X X

e
R e b    



 
       


,      (4.24) 

2

2 2 2

2 1 3 0 2 2

1

1
1 (1 )

X X
a e a a


    

  

 
        

 

 
 
 

,   (4.25) 

 
22 3 4 2

*

4 52 3 4 2

1
1

2

q

q T v
a e a K X

X X X

 
    

     

       
        

       

        
        
       

 (4.26) 
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where  

2 22 2 3

*0 11 01

1 2 3 4 5 2

11

, , , , , , 1e eT

h

R

M T c C Ha b Mca
a a a a a R

K K c

  


    

 



 
       


, 

2*

2 20

1

11 11

1 1
, , , , ( ) ,r

T X

e

TaK a
K e XU X

cK c C c c X X X X X

 
 

 



   
       

  

   
   
   

. 

Now we introduce the following time harmonics as proposed by Pierce (1981): 

  ( )exp( )e e i      .       (4.27) 

Here  /a c  denotes circular frequency. Using proposed time harmonics from 

equation (4.27) in equations (4.23–4.26), we get 

*0

*0

0

1

1

XX R

c
e U b

X

c
c e U b

X
 

   

   


   


   





   
  

,      (4.28) 

 

 

2 2 2 2 2 2

0

2 2

* 2 1 1

2 1 32

1

2 * * 2 * * 2 2 *

4 2 5

( ) 0

( )
0

0

h X X R X

X

q q X q

R e b

a i
a e a a

e a a a

   

 
 



    





        

 
     

       




 
  

 



,    (4.29) 

where 
2 2 2

* * 2 * * * 11 0

1 22

1

, ( ) ,
T v

a a Ki i
 

   


 
        ,  

2

* 2 1 * 1 * 1
, ,

2

q

q q T T v v
i i i


     

   
          
 
 
 

. 

For the solution of equation (4.29), we have non-trivial solution given as: 

6 4 2

1 2 3
( )( , , ) 0

X X X
L L L e         ,     (4.30) 
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where  

2 * 2 * *2 22

51 1 2

1 2 2 2 * * 2 2 * 2 2 *

0 1 1 2 0 1 0 2
( ) ( )

q R q

h h h

aa i b a
L

R a a R a R a

   

   

    
     

     

 
 
 

,

2 2 2 * 2 2 * 2 *2 2 2

1 1 5 5 3 41 1

2 2 2 * 2 * * 2 2 * * *

0 1 1 1 1 2 0 2 1 2

2 2 * 2 * * 2 * 2 * *

2 5 3 2 4

2 2 * * 2 2 * * 2 2 * *

0 1 2 0 1 2 0 1 2

( )( )

( ) ( )

(

( ) ( ) ( )

q q q

h h

q q R q R q

h h h

a i a a a aa i

R a a a R a a a
L

b a a b a a a

R a a R a a R a a

     

   

     

  



 

       
   

   


     
  

     

2 2

1 1

2 2 * * 2

0 1 2 1

)

( )
h

a i

R a a

 

 


 

 

 
 
 
 
  
 

, 

 

4 2 2 * 4 *

1 1 5 3 5

3 2 2 2 * * 2 2 * *

0 1 1 2 0 1 2

( )

( ) ( )

q q

h h

a i a a a
L

R a a R a a

   
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
   

 
   

 
 
 

. 

Since the solution of equation (4.30) is bounded for X  , therefore its roots must 

be positive real parts, i.e. Re( ) 0, 1, 2, 3)
i

k i   . Therefore, the roots 

; 1, 2, 3ik i   of equation (4.30) are: 

     1 1 2 1 3 1

1 1 1
2 sin , ( 3 cos sin ) , ( 3 cos sin )

3 3 3
k A B L k L A B B k L A B B        , 

where, 
11 2 3

3

2 1

1 2 3

1

2 9 27 1
3 , , sin ( )

32

L L L L
A L L C B C

L

 
     . 

Hence after solving the characteristic equation (4.30) and on applying elimination 

technique, the complete solution obtained as  

     
3

0 0
1

1 ( ) ( )
i i i i i i

i

e R S PJ k X QY k X


    ,    (4.31) 

where,  1 2 1 2, ; 1, 2, 3/ /
i ii i i iR S iR R S S    , 

2

2 3 32

1 2 2 * * 2 2 *

0 1 1 0 1
( ) ( )

R

i i

h h

a aa
R k

R a a R a


  

     

 
 
 

, 

2 2

4 2 31 1

2 2 2 2 2 2 * 2 2 *

0 0 1 1 0 1

( )

( ) ( )

R R

i i i

h h h

b aa i
R k k

R R a R a


    

  
         

   
   
   

, 

2 * * 2 2 2 * * 2 *

1 1 2 42

1 * 2 * * * *

2 1 1 2 1 2

( )
q q q

i i

a i a a
S k

a a a a a


          

  


   
   
   

, 
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2 * 2 * 2 2 2 *2 2
5 5 1 1 3 44 21 1

2 2 * * 2 * * * *

1 1 2 1 1 2 1 2

( )( ) q q q

i i i

a a a i a aa i
S k k

a a a a a a

           
    

 

   
   
   

. 

Here , ; 1, 2 , 3
i i

P Q i  are arbitrary constants that depend on  only. 
0 0

andJ Y are 

Bessel functions of First and Second kinds of order zero respectively. Resolving 

cubical dilation ( )e from equation (4.31) for displacementU , we obtain 

 
3

1 1
1

1
( ) ( )

i i i i i
i

i

U R PJ k X QY k X
k

  .     (4.32) 

The temperature gradient has been obtained on differentiating the first part of 

equation (4.31) with respect to X , we obtain 

 

    
3

1 1
1

i i i i i
i

k PJ k X Q Y k X
X






 


.      (4.33) 

On substitution of , , ,e U   from equations (4.31–4.32) in equation (4.28), we get  

3

0 0

0 1 0 1

1

1 1
( ) ( ) ( ) ( )

XX i i i i i i i i i i

i i i

c c
P J k X R J k X Q Y k X RY k X

k X k X




 
     

        
        

        
 , (4.34) 

3

0 0

0 1 0 1

1

1 1
( ) ( ) ( ) ( )

i i i i i i i i i i

i i i

c c
P J k X R J k X Q Y k X RY k X

k X k X



 



 
     

        
        

        
 , (4.35) 

where 0
, , 1, 2 ,3

i i i R i i i R
R S b c R S b i 

  
         . 

4.4 Frequency relations 

In this section, for the analysis of free vibrations, the frequency equations have 

been obtained for equations (4.31)–(4.34) for boundary conditions given in equations 

(4.20) and (4.21), at inner and outer radii 1X  and X  .  On simplification these 

equations, we obtain a system of homogenous equations given below 

6 6 6 1
( ) ( ) 0 ; , 1 6

ij
i j to

 
    ,       (4.36) 

where 
1 2 3 1 2 3

( , , , , , )
T

P P P Q Q Q  . On solving equation (4.36) six linear homogeneous 

equations have been obtained with six unknowns. Therefore for non-trivial solution of 

equation (4.36), we must have 
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0 ; , 1 6
ij

i j to   .       (4.37) 

Here, the constants of ; , 1 6
ij

i j to   are defined for thermally insulated boundary 

conditions in set I and isothermal boundary conditions in set II given below: 

Set I: The constant parameters of ; , 1 6
ij

i j to  are  

 

   

 

   

1 0 0 1

3 0 5 1

1 0 0 1

3 0 5 1

( ) ( 1) / ( ) ; , 1, 2, 3;

; ; , 1, 2, 3;

( ) ( 1) / ( ) ; 1, 2, 3, 4 ,5, 6

; ; 1, 2, 3; 4 ,5, 6;

j i i i i i

j i i j i i

j i i i i i

j i i j i i

J k c k R J k i j

S J k k J k i j

Y k c k R Y k i j

S Y k k Y k i j

     

    

      

      









.   (4.38) 

Set II: In this case, the elements of 
1 2 3 4

, , , ;
j j j j

j 1 to 6     , remain same as 

given in equation (4.38). The remaining elements of 
5 6

, ;
j j

j 1 to6 ,   in equation 

(4.37) for stress free isothermal boundary condition are 

    
5 0 5 0

; , 1, 2,3, ; 1, 2,3; 4,5, 6;
j i j i

J k i j Y k i j       ,   (4.39) 

The elements of 
2 4 6

, , ; 1 6 ,
j j j

j to    are obtained by inserting  along with
i

k , 

in the elements of
1 3 5

, , ; 1 6
j j j

j to    . 

4.5 Deduction of analytical results  

4.5.1 Generalized transversely magneto-thermoelastic voids hollow cylinder 

If the nonlocal constant is assumed to be absent, i.e. 
0

0  , then the analysis 

has been reduced to transversely isotropic magneto-thermoelastic voids hollow 

cylinder with the TPL model of generalized thermoelasticity. 

4.5.2 Generalized and classical magneto-thermoelastic cylinder 

If we establish thermal equilibrium and the nonlocal parameter and voids 

constants are ignored, i.e. 
0

0  , 
1 2

0b M       ,  then the analysis has been 

reduced to the three-phase-lag model of generalized transversely isotropic electro-

magneto-thermoelastic hollow cylinder, which completely agree with the analysis and 

governing equations of Das et al. (2013) . Again, if 0
q v T

t t t   , then the analysis 

reduced to classical magneto-thermoelastic cylinder. 
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4.5.3 Generalized thermoelastic LS model transversely isotropic cylinder 

Again, if the nonlocal parameter, magnetic field constants and voids constants 

are ignored i.e. 
0

0  , 
0

0
e

H   and 
1 2

0b M        and also 

*

0
0,

q T v
K t t t t    , therefore the analysis reduced to transversely isotropic 

thermoelastic hollow cylinder whose governing equations and free vibration analysis 

agree with Sharma et al. (2022a) in the absence of functionally graded materials. 

4.5.4 Elastic cylinder 

If the constants i.e. the nonlocal, voids, magneto, relaxation times and thermo-

mechanical parameters are removed i.e. 0 0  , 1 2 0b M       , 0 0e H   , 

*
0q v TK t t t     and 0R TT     , then the governing equations and the free 

vibration analysis have been reduced to transversely isotropic elastic cylinder which 

agree with Kele and Tutuncu in the absence of functionally graded materials. 

4.6 Numerical results and discussion 

The numerical computational results have been proposed to validate the 

analytical results for TPL model of nonlocal magneto-thermoelastic hollow cylinder 

with voids. The simulated results have been performed for generalized thermoelastic 

models, i.e. coupled thermoelasticity (CTE), Lord-Shulman (LS), dual-phase-lag 

(DPL) and three-phase-lag (TPL) in absence/presence of magnetic fields for nonlocal 

and local elastic materials with voids in thermoelastic hollow cylinder by taking the 

ratio of outer to inner radius 1.5, 2.0  . For computation purpose the transversely 

isotropic material of single crystal of zinc thermoelastic solid with voids material has 

been assumed and its constant values are given in SI units (Chadwick and Seet 

(1970)): 

2 1 1 2 1 1 3 3 15 2

11 2 11 2 6 2 1

11 12 0

5 6 2 2 10 2

1 2

1.24 10 deg , 3.9 10 deg , 7.14 10 , 1.753 10 ,

1.628 10 1.562 10 , 5.75 10 deg , 296 , 10 ,

3.688 10 , 2.0 10 deg , 1.475 10 ,

,

e

r

K Wm C JKg Kg m m

c Nm c Nm Nm T K

N M Nm Nm b

 

 

  

     

   

   

       

       

      
10 2

1.13849 10 .Nm


 

. 

The three-phase-lag (TPL) parameters have been considered from Mondal and 

Kanoria (2020) as 0.05 , 0.07
v T

t t  , 
*

0.09 , 7.0
q

t K  . The magnetic field 
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parameters have been assumed as 7
4 10 / ,

e
H m  

8

0
10 /H A m  from Othman and 

Hilal (2017). The nonlocal parameter value has been considered as 
0

2.3102  from 

Bachher and Sarkar (2019). The frequency dispersion relations have been attained 

from considered boundary conditions, which are transcendental equations, whose 

solution is in the form of complex numbers, is because of rate of dissipative term in 

heat conduction equation (4.4). The numerically analyzed computations and 

simulations have been applied to equation (4.37) for thermally insulated cases till four 

places of decimals.   

The numerical Iteration method has been applied to evaluate the roots of the equation 

(4.37), which is of the type ( ) 0g   . The required substitution for the method i.e.

( )    , so that the sequence ( )
n

 of iterations has been generated for desired 

accuracy level. If the condition ( ) 1,  holds for all I , then the root of 

approximations will converge to the actual value 
a

   of the root, provided 
0

I  , 

here I is the expected interval. The Iteration method’s condition for numerical 

convergence is 
1n n

    . Here   has been considered small arbitrary number to 

achieve the accuracy level selected randomly, which may be satisfied. Therefore, this 

procedure is repeated continuously for the values of   until desired level of accuracy 

achieved. The numerically analyzed complex values (frequencies) of  might be 

written as
m m m

R I
i     . The real and imaginary parts have been considered as 

natural frequencies 
m

R R
   and dissipation factor 

m

I I
   respectively. The value m

has been considered as mode number, which corresponds to root of the equation. The 

numerically analyzed natural frequencies have been presented graphically for TPL, 

DPL, LS and CTE models of thermoelasticity for nonlocal/local thermoelastic hollow 

cylinder in presence and absence of magnetic field. The real parts have been assumed 

as natural frequencies ( )
R

 against mode number ( )m for nonlocal as well as local 

elastic cylinder with and without magnetic field at 1.5  have been shown 

graphically in Fig. 4.1(a-b) to Fig. 4.2(a-b).  These Figs. 4.1(a-b) to 4.2(a-b) (nonlocal 

and local case) depict that initially the vibrations are low and with increasing values 

of m , the variation of vibrations goes on increasing with increasing mode number. 

The behaviors of vibrations are lower in the presence of a magnetic field in contrast to 

the absence of magnetic field for nonlocal and local elastic materials. This is noticed 



Analysis of Vibrations of Electro-Magneto Transversely Isotropic Thermoelastic Materials with Voids 

  92 

from Figs. 4.1(a-b) and 4.2(a-b) that the behavior of variation of natural frequencies is 

larger in case of TPL model of generalized thermoelasticity in comparison with other 

models of thermoelasticity. 

 

Figure 4.1(a): Natural frequencies ( )
R

 against mode number ( )m for TPL, DPL, LS 

and CTE models at 1.5  in nonlocal thermoelastic cylinder with voids with 

magnetic field. 

 

Figure 4.1(b): Natural frequencies ( )
R

 against mode number ( )m for TPL, DPL, LS 

and CTE models at 1.5  in nonlocal thermoelastic cylinder with voids without 

magnetic field. 
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Figure 4.2(a): Natural frequencies ( )
R

 against mode number ( )m for TPL, DPL, LS 

and CTE models at 1.5  in local thermoelastic cylinder with voids with magnetic 

field. 

 

Figure 4.2(b): Natural frequencies ( )
R

 against mode number ( )m for TPL, DPL, LS 

and CTE models at 1.5  in local thermoelastic cylinder with voids without magnetic 

field. 
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Figure 4.3(a): Frequency shift ( )
Shift

 against mode number ( )m for TPL, DPL and 

LS models at 1.5  in nonlocal thermoelastic cylinder with voids with magnetic 

field. 

 

Figure 4.3(b): Frequency shift ( )
Shift

 against mode number ( )m for TPL, DPL and 

LS models at 1.5  in nonlocal thermoelastic cylinder with voids without magnetic 

field. 
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Figure 4.4(a): Frequency shift ( )Shift against mode number ( )m for TPL, DPL and 

LS models at 1.5  in local thermoelastic cylinder with voids with magnetic field. 

 

Figure 4.4(b): Frequency shift ( )Shift against mode number ( )m for TPL, DPL and 

LS models at 1.5  in local thermoelastic cylinder with voids without magnetic field. 
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Figure 4.5(a): Frequency shift ( )
Shift

 against mode number ( )m for TPL, DPL and LS 

models at 2.0  in nonlocal thermoelastic hollow cylinder with voids with 

magnetic field. 

 

Figure 4.5(b): Frequency shift ( )
Shift

 against mode number ( )m for TPL, DPL and LS 

models at 2.0  in nonlocal thermoelastic hollow cylinder with voids 

without magnetic field. 
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Figure 4.6(a): Frequency shift ( )Shift against mode number ( )m for TPL, DPL and 

LS models at 2.0  in local thermoelastic hollow cylinder with voids with 

magnetic field. 

 

Figure 4.6(b): Frequency shift ( )Shift against mode number ( )m for TPL, DPL and 

LS models at 2.0  in local thermoelastic hollow cylinder with voids 

without magnetic field. 
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Figure 4.7(a): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 1.5   in nonlocal thermo-elastic hollow cylinder with 

voids with magnetic field. 

 

Figure 4.7(b): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 1.5  in nonlocal thermo-elastic hollow cylinder 

with voids without magnetic field. 
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Figure 4.8(a): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 1.5  in local thermo-elastic hollow cylinder with 

voids  with magnetic field. 

 

Figure 4.8(b): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 1.5  in local thermo-elastic hollow cylinder with 

voids without magnetic field. 



Analysis of Vibrations of Electro-Magneto Transversely Isotropic Thermoelastic Materials with Voids 

  100 

 

Figure 4.9(a): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 2.0  in nonlocal elastic hollow cylinder with voids 

with magnetic field. 

 

Figure 4.9(b): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 2.0  in nonlocal elastic hollow cylinder with voids 

without magnetic field. 
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Figure 4.10(a): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 2.0  in local thermo-elastic hollow cylinder with 

voids with magnetic field.  

 

Figure 4.10(b): Thermoelastic damping ( )
F

D against mode number ( )m for TPL, DPL, 

LS and CTE models at 2.0  in local thermo-elastic hollow cylinder with 

voids without magnetic field. 
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The frequency shift )( shift  and the thermo-elastic damping related to inverse quality 

factor 1
( )Q

 for transversely isotropic electro-magneto generalized thermoelastic 

hollow cylinder have been calculated by Moosapour et al. (2014) as : 

*

1
, 2

CTE

R R I

shift CTE

RR

Q



  
  


, Here CTE stands for coupled 

thermoelasticity and *
  denotes for LS, DPL, TPL models of generalized 

thermoelasticity. Here, in the figures thermoelastic damping has been denoted as 

1

F
Q D


 . Fig. 4.3 and Fig. 4.4 have been represented for frequency shift ( )shift

against mode number ( )m for different models of generalized thermoelasticity i.e. 

TPL, DPL and LS at 1.5  for nonlocal/local elastic cylinders with voids in 

presence/absence of magnetic field. It is observed from Figs. 4.3(a–b) (nonlocal case 

with/without magnetic field) that initially the variation of frequency shift vibrations is 

lower, the peak values have been noticed at 2.0m  , and keep on decreasing linearly 

with increasing value of mode number. This has been noticed from Fig. 4.4(a) (local 

with magnetic field) that the frequency shift vibrations are lower initially, accomplish 

maximum amplitude at 2.0 4.0m   and with increasing values of m , the behavior 

of vibrations goes on decreasing and become linear after 7.0m  . Fig. 4.4(b) (local 

without magnetic field) shows that initially vibrations have lower behavior, 

accomplish maximum amplitude at 2.0m  , then decreases to attain small peaks at 

4.0m  and go on decreasing to become linear at 6.0m  . 

The frequency shift is represented in Fig. 4.5 and Fig. 4.6 for TPL, DPL and LS 

models of generalized thermoelasticity at 2.0   for nonlocal/local elastic voids 

hollow cylinder with/without magnetic field. It has been observed from Figs. 4.5(a–b) 

that initially the frequency shift vibrations are low, after attaining its maximum 

amplitude at 2.0m  , it decreases slightly at 4.0m  and keep on decreasing linearly 

with increasing mode number. It is revealed from Fig. 4.6(a) that the behavior of 

frequency shift vibrations is low initially, attain its peak value at 2.0m  , decreases up 

to 3.0m  and become linear with an increase in value of m . Fig. 4.6(b) tells that 

initially the frequency shift vibrations are meager, attains its maximum amplitude 

between 2.2 4.3m  , and keep on decreasing with increase in mode number. This is 
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to be noticed that the variation of vibrations are larger in TPL case than DPL and LS 

cases.  

The thermoelastic damping ( )
F

D against mode number ( )m  have been drawn in 

Figs. 4.7 and 4.8 for the generalized thermoelastic models, i.e. TPL, DPL, LS and 

CTE at 1.5  for nonlocal/local elastic cylinder with voids in presence/absence of 

magnetic field. This is noticed from Figs 4.7(a–b) (nonlocal case) that initially the 

thermoelastic damping vibrations are larger, go on decreasing up to 3.0m   and from 

left to right, the variation of vibrations becomes linear. It has been revealed form Fig. 

4.8(a) (local case with magnetic field) depict that initially the thermoelastic damping 

vibrations are larger, achieve its minimum amplitude between   2.0 3.0m  , 

increases up to  4.0m   and with increasing mode number values, the vibrations 

become linear. Fig. 4.8(b) (local case without magnetic field) tells that initially the 

vibrations are larger, decreases up to 3.0m  , and with increasing values of mode 

number, the vibrations keep on increasing linearly. 

The thermoelastic damping ( )
F

D versus mode number ( )m  has been represented 

in Figs. 4.9 and 4.10 for TPL, DPL, LS and CTE models of thermoelasticity at 2.0 

for nonlocal/local elastic hollow cylinders with voids in presence/absence of magnetic 

field. It is concluded from Figs. 4.9(a–b) (nonlocal case) that initially the variation of 

thermoelastic damping vibrations is larger, decreases up to 3.0m   and with 

increasing values of mode number the vibrations become linear. It has been noticed 

from Fig. 4.10(a) (local case) that initially the thermoelastic damping vibrations are 

larger, decreases up to 4.5m  , and with increasing values of m , the vibrations 

become linear. This is observed from all the figures that the vibrations are larger in 

case of TPL model in comparison with DPL, LS and CTE models of thermoelasticity. 

Also due to the effect of magnetic field the behavior of vibrations is noted to be larger 

without magnetic field in contrast to with magnetic field. It is observed that 

thermoelastic damping vibrations noted to be decreasing between 3.0m  to 5.0m   

and then become linear. 

4.7 Conclusions 

Vibration analysis of electro-magneto transversely isotropic generalized nonlocal 

thermoelastic hollow cylinder with voids material has been presented in the reference 
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of TPL model. The outer and inner surfaces of hollow cylinder have been assumed 

stress free and thermally insulated/isothermal. From the discussion of analytical and 

numerical results, following conclusions have been observed: 

1. It is clearly indicated from the effect of magnetic field that the variations are 

larger in absence of magnetic field in contrast to the presence of magnetic field. 

2. The effect of TPL model of magneto thermoelastic hollow cylinder is presented 

numerically for field functions i.e. thermoelastic damping and frequency shift in 

presence/absence of magnetic field. All the figures depict that the variation of 

vibrations has larger behavior in the TPL model of generalized thermoelasticity in 

contrast to DPL. LS and CTE cases because of effect of phase-lags of relaxation 

time parameters.  

3. It is observed from the analysis of graphs that the natural frequencies clearly 

indicate that as mode number increases, the vibrations go on increasing. This has 

been noticed that after attaining maximum and minimum amplitudes of variations, 

the behavior of thermoelastic damping becomes linear because of the coupling 

between elastic, voids equilibrated volume fraction and thermal fields. 

4. The free vibration functions i.e. thermoelastic damping and frequency shift are 

influenced by non-locality effect and represented for nonlocal and local cases 

with/without magnetic fields. From present work, researchers may receive the 

motivation to inspect the analysis of free vibrations of thermoelastic and magneto-

thermoelastic materials with voids as novel applications in continuum mechanics 

such as material science, designing of new materials and useful in practical 

situations such as geomagnetic, optics, geophysics and acoustics, oil prospecting 

etc.  

5. From literature study, it has been found that the TPL models provide better 

approach to allow voids and relaxation time parameters, which have many 

applications in the field of science, technology and engineering. This chapter 

gives useful applications in the area of seismology for mining and drilling in the 

earth’s crust. 

 


