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CHAPTER-03 

VIBRATION ANALYSIS OF TRANSVERSELY 

ISOTROPIC ELECTRO-MAGNETO GENERALIZED 

THERMOELASTIC SPHERE WITH VOIDS AND DUAL-

PHASE-LAG EFFECT 

3.1 Introduction 

The solid voids theory with elastic materials is extended from classical theory 

of elasticity. The voids theory is the distribution of pores in elastic materials 

comprised in kinetic variables and considered as there is no significance of energetic 

or mechanical properties.  

Herein, the main aim of the current chapter is to present dual-phase-lag (DPL) model 

of transversely isotropic generalized electro-magneto nonlocal thermoelastic hollow 

sphere/disk with voids material. The time harmonic variations have been employed to 

constitutive relations and governing equations. The elimination method has been 

employed to find field functions to present analytical results and numerical Iteration 

method has been applied to assumed boundary conditions. To check the effects of 

DPL model and nonlocal elasticity, the analytical results for frequencies and 

thermoelastic damping in absence/presence of magnetic field, have been represented 

graphically. 

3.2 The governing fundamental equations and mathematical model  

Here an electro-magneto transversely isotropic nonlocal elastic sphere with 

voids material has been presented in the context of dual-phase-lag (DPL) model of 

generalized thermoelasticity. The inner and outer radii of hollow sphere/disk has been 

assumed as IR a , OR a  with domain a r a  . The problem is considered to 

be free from internal and external mechanical/thermal loads and free from voids 

volume fraction shown in Fig. 3.1. The spherical polar coordinates  , ,r    are 

assumed in such a way that the field components, i.e. ( , , ) ( ( , ),0,0)ru u u u r t  u is 
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displacement vector, the equilibrated voids volume fraction and temperature 

component are    , and ,r t T T r t   . 

 

Figure 3.1: Geometry of the problem 

The coordinated system has been assumed in such a way that the strength of magnetic 

field H proceeds in the direction of longitude of the sphere. The Maxwell’s 

equations, generalized Ohm’s law in the continua of deformation in the absence of 

charge density and displacement current is 

, 0 ,e

u

t t
 

  
       

  

B
E = H = J , B H , .B J = E + B .  (3.1) 

Here the strength of magnetic field, 0 hH = H , where, 0 0(0,0, )HH , h is 

perturbation of magnetic field which is too minute that their derivatives and the 

product of u and h might be neglected due to linearization of equations, B is 

magnetic field, due to small effect of temperature gradient current density J  is 

neglected and E is electric field. Therefore the governing equation of motion under 

the impact of electromagnetic field, consecutive relations, equation of voids volume 

fraction and heat conduction equation without body forces, heat sources and voids 

concentration are given by Cowin and Nanziato (1983) and Dhaliwal and Singh 

(1980) as: 
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Stress-strain-temperature relations 
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Strain- displacement relations 

, , 0rr r r

u u
e e e e e e

r r
    


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where
2 2(1 ) ,( , , )L

ij ij i j r        local-nonlocal stress relations, where  the term “

L ”  denotes  local  elastic medium. Here 0 0e a   is a nonlocal constant parameter, 

where 0e is material constant and 0a is internal characteristic length, 

, ; ( , , , )ij ije i j r   are strain and stress components; ,0,0)(u(r ,t)u = is 

displacement vector. T has been assumed as increase in temperature over reference 

temperature 0T , ;( , , )ij i j r   is thermal modulii, where

11 12 1 13 3( )r c c c       ; 1 3 T    is coefficient of linear thermal expansion 

(Dhaliwal and Singh (1980)). Here ; ( , , )i i r  F is body force i.e. Lorentz force 

F = (J B)  in radial direction,  and b are the void parameters,  is mass density, 

  is the equilibrated inertia, 21, are the material constants due to presence of voids 

and M  is thermo-void coupling parameter.  The parameter K is thermal 

conductivity, the constants andq pt t have been represented as the phase-lags of heat 

flux and temperature gradient respectively which satisfy the inequality 0p qt t  , 
e

C

be specific heat at constant strain, the parameters ; , 1,2ijc i j  are elastic constants for 

transversely isotropic material whose values are given below: 
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where E is Young’s modulus and  is Poisson ratio. 

Also 
2u u

e
r r


 


is dilatation, 

2
2

2
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r r r

 
  

 
 is Laplace operator. 

3.3  Boundary conditions 

The initial conditions for nonlocal transversely isotropic hollow sphere with 

voids material has been considered as 

( ,0) ( ,0) ( ,0)
0 ( ,0) ( ,0) ( ,0) at ,

T r u r r
T r u r r r a a

t t t


 

  
      

  
.                

(3.7) 

Since the domain of hollow sphere is a r a  , hence thermally 

insulated/isothermal traction free boundary conditions are: 

Set I: 0, 0, , 0 ; ,rr rT r a a      .     (3.8) 

Set II: 0, 0, 0 ; ,rr T r a a      .     (3.9) 

3.4  Solution of mathematical model  

The Maxwell’s equations (3.1) has been divided into three parts,  

The first part determines as: 

1 1
0 , , ( )r

e e

E HHH
rE

t t r t r

 


 

  
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    
,   (3.10) 

The second part as 

2

2

1
0 , , ( )r

H
J J J r H

r r r



  

 
   

 
,    (3.11) 

where , , ) , ( , E , E ) and ( , , )r r r(H H H E J J J      H = E J . 

The third part of equation (3.1) implies that there is no perturbed field applied initially 

in radial direction i.e. 0rh

r





,which implies that 0rh  . The modified Ohm’s law in 

equation (3.1) yields: 
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.   (3.12) 

It has been noticed from equations (3.10) and (3.12) that as 0rJ  , which implies 

that 0rE  . The perturbation of magnetic field h is very small in comparison with 

strong initial magnetic field 0H in setting the term 0H h H . Therefore, in 

eliminating , ,rJ J J  and utilizing equations (3.1) and (3.11) - (3.12), we obtain 
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              

.   (3.13) 

Here 
1`( )e 

is magnetic viscosity. The second part of equation (3.13) yields 

0

2u u
h H

r r


 
   

 
due to perfect electrical conductor, the magnetic viscosity

(1/ ) 0 ase   , hence there is no perturbation at  . Therefore, the 

equation of motion (3.2) reduces to  

2
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e
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H
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. (3.14) 

Substituting the constitutive relations from equation (3.5) in equation (3.14) we obtain 

2 2 2
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.   (3.15) 

Applying divergence both sides to equation (3.15) we get, 
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where 
2
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2
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
. 

To remove complexity of equations we commence the non dimensional quantities as 

follows 
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Plugging non-dimensional quantities from proposed equation (3.17) in equations 

(3.3–3.5) and (3.16), we obtained following equations in non dimensional form as 
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. 

We introduce time harmonic vibrations as already proposed by Pierce (1981), we 

have 

   , , , , ie e e      ,       (3.22) 

where  
a

c


   is the circular frequency. 

Using time harmonic vibrations from equation (3.22) in equations (3.18–3.21) we get 
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In order to eliminate the parameters , ,e    a characteristic equation has been 

obtained from the non-trivial solution of equation (3.24) as 

6 4 2( )( , , ) 0x x xL M N e         ,     (3.25) 

where  11 22 33 12 21 13 31 11 23 32 22 33( ), ( )L b b b b b b b N b b b b b         

22 33 23 32 11 33 11 22 12 21 33 12 23 31 13 21 32 13 31 22( )M b b b b b b b b b b b b b b b b b b b b        . 

It has been investigated from characteristic equation (3.25) that it has bounded 

solution for x , for this there is a requirement of Re( ) 0, 1, 2, 3)ik i   . 

Therefore roots ; 1, 2, 3ik i   of equation (3.25) have been achieved as given below: 
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Hence, the solution of equation (3.25) is obtained as 
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Here , ; 1, 2, 3i iP Q i  are constants that depend on  . 
1/2 1/2andJ Y are modified 

Bessel functions of order 
1

2

 
 
 

 with First and Second kinds respectively. Resolving 

cubical dilation ( )e from equation (3.27) for displacementU , we obtain 

 
1

3
2

3/2 3/2
1

1
( ) ( )i i i i i

i
i

U x R PJ k x QY k x
k





  .     (3.29) 

On differentiating equation (3.26) with respect to x , the temperature gradient is 

obtained as 
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Substituting the values of , , ,e U   from equations (3.26–3.29) in equation (3.18) 

we get  
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
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    

  
             

 ,   

 (3.31) 
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    
    

  
             

 ,   (3.32) 

where 
*

0, , 1,2,3i i i R i i i RR b S c R b S i           . 

3.5 Frequency relations 

The frequency relations have been obtained by substituting the equations 

(3.26) to (3.31) for boundary conditions given in equations (3.8) and (3.9), for 

thermoelastic transversely isotropic hollow sphere with voids material for DPL 

model, when elastic material is considered as nonlocal and local under the impact of 

magnetic field at 1x  and x  as inner and outer radii of the sphere.  On 

simplification, we obtained following system of linear homogeneous equations: 

0  ,          (3.33) 

where 6 6( ) ; , 1 6ijm i j to    and 1 2 3 1 2 3( , , , , , )TP P P Q Q Q  . The set of 

equations have been obtained from a non-trivial solution if the determinant of 

coefficient matrix  diminishes, hence frequency equations are given as: 

0 ; , 1 6ijm i j to  ,        (3.34) 

where, ; , 1 6ijm i j to  have been classified in thermally insulated/isothermal 

boundaries given below in separate sets I and II:  

Set I: The constant elements of ; , 1 6ijm i j to for equation (3.34) are  

 

 

1 1/2 0 3/2 3 1/2 5 3/2

1 1/2 0 3/2 3 1/2 5 3/2

( ) 2 ( 1) / ( ), ( ), ( )

; , 1,2,3

( ) 2 ( 1) / ( ), ( ), ( )

; 1,2,3; 4,5,6

j i i i i i j i i j i i

j i i i i i j i i j i i

m J k c k R J k m S J k m k J k

i j

m Y k c k RY k m S Y k m k Y k

i j

      


 


       
  

,  (3.35) 

Set II: Here in this set, the elements of 1 2 3 4, , , ;j j j jm m m m j 1 to6 remains same 

as given in equation (3.35). The remaining elements of 5 6, ;j jm m j 1 to 6 from  

the frequency equation (3.34) are:  
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    5 1/2 5 1/2; , 1 ,2, 3, ; 1 ,2, 3; 4,5,6;j i j im J k i j m Y k i j     .   (3.36) 

Inserting   along with ik , in 1 3 5, , ; 1 6j j jm m m j to  we obtain the constant 

elements of 2 4 6, , ; 1 6j j jm m m j to . 

3.6 Deduction of analytical results  

3.6.1 Generalized transversely isotropic magneto-thermoelastic 

hollow sphere with voids 

If the nonlocal elastic parameter i.e. 00  has been ignored, then the above 

model reduces to DPL model of thermoelastic magneto sphere with voids. 

3.6.2 Classical transversely isotropic thermoelastic hollow sphere 

If nonlocal parameter, phase lag relaxation time parameters and voids 

constants have been ignored, i.e. 0 0  , 1 2 0b M       and 0p qt t    and 

system is in thermal equilibrium then the analysis of free vibrations is reduced to the 

coupled magneto-thermoelastic hollow sphere. Further if nonlocal, voids, magneto 

parameters, the phase-lags of temperature gradient relaxation time parameter are 

ignored i.e. 0 0  , 1 2 0b M         , 0 0e H   , 0pt   and the value 

of heat flux is considered as 2
0 , 0q qt t t  , also the functionally graded parameter 

0  has been taken from Sharma and Mishra (2017), then the governing equations 

in present chapter and  Sharma and Mishra (2017) have been reduced to 

2 2

2 2 2

2 2
R

u u u u

x x x x x






   
   

   
,       (3.37) 

2 2 2

0 02 2 2

2 2T

R

u
u

x x x x x

 
  

    


           

         
          

. (3.38) 

Hence the governing equations and the analysis have been reduced to transversely 

isotropic thermoelastic hollow sphere with LS model of generalized thermoelasticity 

which is good agreement with Sharma and Mishra (2017) without inhomogeneity 

parameter.  

3.6.3 Elastic sphere 
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  If the constants i.e. the nonlocal, voids, magneto, relaxation time parameters 

and thermo-mechanical constants are considered to be absent i.e. 0 0  , 

1 2 0b M         , 0 0e H   , 0p qt t  and 0R T T    , also the 

functionally graded parameter 0  has been taken in Kele and Tutuncu (2011),  then 

the governing equations of present chapter and Kele and Tutuncu (2011) are reduced 

to 

2 2

2 2 2

2 2u u u u

x x x x 

  
  

  
.          (3.39) 

Therefore, the governing equations and free vibration analysis is reduced to 

transversally isotropic elastic sphere which is good agreement with Kele and Tutuncu 

(2011) in the absence of functionally graded materials. 

3.7 Numerical results and discussion 

Here in this section, for numerical simulations and computations, the 

analytical results in a transversely isotropic DPL model of generalized magneto 

nonlocal thermoelastic hollow sphere with voids material has been presented in this 

chapter. The numerical results has been performed for LS model, DPL model, CTE 

model and elasticity (E) in the absence and presence of magnetic fields at 1.5, 2.0  . 

Modeling has been prepared for transversely isotropic thermoelastic solid with voids 

material single crystal of zinc whose physical constant values are given in SI units 

(Chadwick and Seet (1970))  

2 1 1 11 2 11 2
12 11 0

6 2 1 2 1 1 3 3

1.24 10 deg , 1.562 10 , 1.628 10 , 296 ,

5.75 10 deg , 3.9 10 deg , 7.14 10 , 10.r e

K Wm c Nm c Nm T K

Nm C JKg Kg m



   

   

    

      

       

And voids parameters are: 

15 2 5 6 2 2

10 2 10 2
1 2

1.753 10 , 3.688 10 , 2.0 10 deg ,

1.475 10 , 1.13849 10

m N M Nm

Nm b Nm

 

 

   

 

     

    
 

The parameters of magnetic fields are assumed as 
74 10 / ,e H m    

8
0 10 /H A m  from Othman and Hilal (2017). The dual phase-lag parameters have 

been assumed as 0.05pt  , 0.07qt   (Mondal (2019). The nonlocal parameter has 

been considered as 3102.20 
 
in Bachher and Sarkar (2019). The secular dispersion 
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relations obtained using boundary conditions are transcendental equations, which are 

complex numbers (real as well as imaginary part) because of dissipative term in heat 

condition equation (3.4). The numerical simulations/computations have been 

employed to equation (3.34) for assumed thermally insulated boundary conditions. 

The numerical Iteration method has been applied to evaluate the roots of equation 

(3.34), which is of the type ( ) 0g   . The required substitution for the considered 

method is ( )  , therefore, the sequence ( )n of iterations has been generated 

for desired accuracy level. If the condition ( ) 1,  for all I , then the root of 

approximations will converge to a  , provided 0 I  , where I is the anticipated 

root of the interval. The numerical convergence i.e. 1n n    , is the required 

condition for computations. Here   has been chosen small arbitrary number to 

accomplish the required accuracy level selected randomly, which might be satisfied. 

Therefore, the above procedure is repeated continuously for the values of  (real as 

well imaginary part) many times until we obtain desired level of accuracy. The 

numerically analyzed complex values of  are formulated as
m m m

R Ii    . Here 

the real part has been presumed as natural frequency
m

R R   and imaginary part as 

dissipation factor 
m

I I  respectively. The mode number is denoted as parameter

m , which corresponds to root of the transcendental equation. Hence, numerically 

analyzed natural frequencies have been presented graphically for the theories of 

thermoelasticity i.e. DPL, LS, CTE and E, for nonlocal and local thermoelastic hollow 

sphere under the impact of magnetic field (presence and absence). Variation of 

vibrations in nonlocal/local thermoelastic sphere has been shown graphically for of 

natural frequencies ( )R versus mode number ( )m with and without magnetic field at 

1.5  in Fig. 3.2 to Fig. 3.3. It is observed from Fig. 3.2 and Fig. 3.3 that initially 

the vibrations noted to have low trends but increases with increasing values of m . 

The behaviors of vibrations are higher in the absence of magnetic field in contrast to 

the presence of magnetic field for local and nonlocal elastic materials. This is noticed 

from Fig. 3.2 and Fig. 3.3 that the behavior of variations of real part ( )R is larger for 

DPL model in comparison with LS, CTE and Elasticity models.  
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Moosapour et al. (2014) defined fractions of lost energy per cycle of vibrations as 

defined  2 2(Re( ) Im( ) ) / 2 Im( )m m m
R I IQ      . The number in denominator i.e. 2  

has been occurred due to generated mechanical energy of the material, is relative to 

real part. This has been observed from computations that frequencies with real part 

are larger in comparison with imaginary part. Hence, thermoelastic damping is 

calculated as 1 2 I

R

Q 



, from Sharma and Mishra (2017) for thermoelastic 

models. Here themoelastic damping 1Q has been denoted as FD . The fractional error 

( )K from iterative computations in the real part of frequency 
m

R  is defined as 

 ( ) 1 1Re( ) Re( ) / Re( )
K m k m k m k

R R R
       

 

 (Moosapour et al. (2014).  Therefore, 

the error 
*( ) will go down below the accepted value, and the process of iteration 

ends. Hence, the frequency shift )( shift  has been defined as

*

( )E
R R

shift E
R

 
 


( 

Sharma et al. (2022b)). Here *  stands for CTE, LS, DPL models and E is elasticity.  

The Fig. 3.4 represents frequency shift ( )shift versus mode number ( )m for LS, CTE 

and DPL at normalized thickness 1.5  for nonlocal elastic sphere with voids in 

presence and absence of magnetic field. It has been seen from Fig. 3.4(a) (with 

magnetic field) that initially the variation of vibrations of frequency shift are lower, 

with increasing value of mode number the peak values have been noticed at 4.0m  , 

and at the value of 5.0m  , the variations become linear.   

Fig. 3.4(b) (without magnetic field) depicts that initially the variations are low, 

become maximum at 4.0m   and the variation of vibrations decreases with 

increasing values of mode number. Frequency shift against mode number for three 

different models LS, CTE and DPL at normalized thickness of the sphere/disk 1.5 

for local elasticity with voids in presence/absence of magnetic field has been shown in 

Fig.3.5. It has been revealed from Figs. 3.5(a) and 3.5(b) that in the beginning the 

behavior of vibrations is larger, decreases up to 3.0m  and from left to right 

vibrations decreases linearly. It has been observed from Figs. 3.4 and 3.5 that the 

frequency shift is larger in case of DPL model in comparison with LS and CTE 
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models of thermoelasticity. Fig. 3.6 and Fig. 3.7 are presented for frequency shift

( )shift against mode number ( )m at LS, DPL, and CTE at radius ( 2.0)   in 

magneto-thermoelastic voids sphere with and without magnetic field in nonlocal/local 

elastic materials. 

 

Figure 3.2(a): Variation of natural frequencies ( )R  against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case with magnetic field. 
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Figure 3.2(b): Variation of natural frequencies ( )R  against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case without magnetic field. 

 

Figure 3.3(a): Variation of  natural frequencies ( )R  against mode number ( )m for 

thermoelastic models at 1.5  in local case with magnetic field. 

 

Figure 3.3(b): Variation of  natural frequencies ( )R  against mode number ( )m for 

thermoelastic models 1.5  in local case without magnetic field. 
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Figure 3.4(a): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case with magnetic field. 

 

Figure 3.4(b): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case without magnetic field. 
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Figure 3.5(a): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 1.5  in local case with magnetic field. 

 

Figure 3.5(b): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 1.5  in local case without magnetic field. 



Analysis of Vibrations of Electro-Magneto Transversely Isotropic Thermoelastic Materials with Voids 

71 

 

Figure 3.6(a): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 2.0  in nonlocal case with magnetic field. 

 

Figure 3.6(b): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 2.0  in nonlocal case without magnetic field. 
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Figure 3.7(a): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 2.0  in local case with magnetic field. 

 

Figure 3.7(b): Variation of frequency shift ( )Shift against mode number ( )m for 

thermoelastic models at 2.0  in local case without magnetic field. 
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Figure 3.8(a): Variation of thermoelastic damping ( )FD against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case with magnetic field. 

 

Figure 3.8(b): Variation of thermoelastic damping ( )FD against mode number ( )m for 

thermoelastic models at 1.5  in nonlocal case without magnetic field. 
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Figure 3.9(a): Variation of thermoelastic damping ( )FD against mode number ( )m for 

thermoelastic models at 1.5  in local case with magnetic field. 

 

Figure 3.9(b): Variation of thermoelastic damping ( )FD against mode number ( )m for 

thermoelastic models at 1.5  in local case without magnetic field. 
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Figure 3.10(a): Variation of thermoelastic damping ( )FD against mode number ( )m

for thermoelastic models at 2.0  in nonlocal case with magnetic field. 

 

Figure 3.10(b): Variation of thermoelastic damping ( )FD against mode number ( )m

for thermoelastic models at 2.0  in nonlocal case without magnetic field. 
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Figure 3.11(a): Variation of thermoelastic damping ( )FD against mode number ( )m

for thermoelastic models at 2.0  in local case with magnetic field. 

 

Figure 3.11(b): Variation of thermoelastic damping ( )FD against mode number ( )m

for thermoelastic models at 2.0  in local case without magnetic field. 

It is revealed from Fig. 3.6(a) that shift vibrations are low in beginning, increases up 

to 2.0m  , then vibrations go on decreasing to become linear at 6.0m  . Fig. 3.6(b) 
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shows meager vibrations initially, achieve maximum amplitude at 2.0m  , then it 

shows small dip values at 3.0m  and decreases linearly as mode number increases. 

From Fig. 3.7 we observe that initial trends in the vibrations are larger, go on 

decreasing up to 4.0m  and become linear with increasing values of m . 

Figs. 3.8, 3.9, 3.10 and 3.11  have been shown for nonlocal and local elastic spheres 

with voids for thermoelastic damping ( )FD against mode number ( )m  in 

presence/absence of magnetic field, in DPL, CTE, LS and E at 1.5  and 2.0   

respectively. Fig. 3.8(a–b) (nonlocal case at 1.5  ) revealed that initially the 

variation is low, achieve the maximum amplitude between 2.0 4.0m  , then decreases 

linearly. It has been noticed from Fig. 3.9(a–b) (local case at 1.5  ) that initially the 

thermoelastic damping vibrations are low and peak value is noted at  2.0m  , then 

deceases linearly with increasing values of m. It has been concluded from Fig. 3.10(a) 

that initially the variation of thermoelastic damping vibrations is larger, decreases up 

to 3.0m   and become linear with increasing values of m . Also, it is noticed from 

Fig. 3.10(a) (nonlocal case) that variations in DPL, LS are larger in contrast to CTE, 

elasticity (E) models. Fig. 3.10(b) for nonlocal case depicts that variation of FD is 

larger initially, noted to be dip values between 2.0 0.3m  , achieve maximum 

amplitude at  6.0m   and decreases linearly after 6.0m  . It is revealed from Fig. 

3.11(a) for local case that variation of thermoelastic damping vibrations is larger 

initially, decreases to achieve dip values between 2.0 3.0m  , and go on increasing 

to become linear at 6.0m  . Fig. 3.11(b) for local case shows that initially variation 

of vibrations are larger, decreases to achieve dip for 2.0 5.0m  , and increases 

linearly with m . All the figures depict that the variation of vibrations are larger in 

case of DPL model in comparison with LS, CTE and elasticity (E) cases of 

thermoelasticity. Also in some figures, due to the effect of magnetic field the behavior 

of vibrations is found to be larger without magnetic field in contrast to with magnetic 

field. It is also noted that thermoelastic damping variation of vibrations increases and 

decreases with increase in mode number due to coupling of elastic field in the 

mechanical, temperature field, voids volume fraction and magnetic fields. 
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3.8 Conclusions and Remedies  

In this chapter, the analysis for electro-magneto transversely isotropic nonlocal 

generalized thermoelastic hollow sphere with voids, have been represented. Ordinary 

differential equations have been acquired from governing equations by applying time 

harmonics. The outer and inner surfaces of hollow sphere have been considered stress 

free, free from voids volume fraction and thermally insulated/isothermal conditions. 

From the calculated analytical and numerical results/discussions, following 

conclusions have been observed: 

1. This is observed from all the figures that the variation of vibrations is larger 

for DPL model of generalized thermoelasticity in contrast to other models 

because of the effect of relaxation time parameter. 

2. The effect of magnetic field clearly indicates that the variations are larger in 

absence of magnetic field in contrast to presence of magnetic field. The graphs 

representing natural frequencies clearly indicate that variation of vibrations go 

on increasing as the value of mode number increases. 

3. The frequency equations have been derived and examined computationally for 

analytical results. The effect of DPL model of generalized magneto 

thermoelastic hollow sphere is represented numerically for field functions of 

free vibration analysis in presence/absence of magnetic field. 

4. With increasing values of mode number, it is observed that the behavior of 

thermoelastic damping becomes linear after achieving maximum amplitude, 

because of the coupling between elastic, voids equilibrated volume fraction 

and thermal fields. The frequency shift, damping and natural frequencies are 

influenced by non-locality effect and represented for nonlocal and local cases 

with and without magnetic fields.  

5. The results obtained in this chapter might prove useful applications for those 

who are active in research activities in seismology for drilling and mining in 

the earth’s crust. The study also finds applications for physicist/researchers 

who are working in the field of designing of new materials as well as in 

practical situations as in geomagnetic, optics, geophysics, acoustics, and oil 

prospecting etc. 
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6. The study of present chapter find applications in the field of science and 

engineering that the models like LS, DPL and CTE generalized thermoelasticity 

provide better and easier description to allow voids and relaxation time 

parameters. From current work, researchers receive the motivation to examine 

the free vibration analysis of conducting elastic, thermoelastic and magneto-

thermoelastic materials with voids as novel applications in continuum 

mechanics.  

 

 


