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CHAPTER - 02 

VIBRATION ANALYSIS OF ELECTRO-MAGNETO 

TRANSVERSELY ISOTROPIC NON-LOCAL 

THERMOELASTIC CYLINDER WITH VOIDS 

2.1 Introduction 

In this chapter the free vibrations of transversely isotropic nonlocal electro-magneto 

thermoelastic hollow cylinder with voids have been addressed in the preview of generalized 

thermoelasticity. The governing equations and the constitutive relations are transformed 

into coupled ordinary differential equations by applying time harmonic variations. The 

boundary conditions of the outer and the inner surfaces of the hollow cylinder are 

considered to be traction free, no change in voids volume fraction and thermally 

insulated/isothermal temperature field. The analytical results for frequency equations are 

presented and validated with existing literature. To explore the free vibration analysis from 

the considered boundary conditions, the numerical Iteration method has been applied to 

create data by using MATLAB software tool. The obtained analytical results are represented 

graphically with the assistance of numerical computations and simulations in 

absence/presence of magnetic field for nonlocal/local thermoelastic materials. To verify the 

elastic nonlocal effects in different models of thermoelasticity, the field functions are 

represented graphically with and without magnetic field effects.  

2.2 Formulation of mathematical model  

The nonlocal transversely isotropic magneto-thermoelastic hollow cylinder with 

voids of inner radius IR a and outer radius OR a    having domain a r a  , free 

from internal and external mechanical/thermal loads, initially at uniform temperature 0T  is 

shown in Fig. 2.1. The strength of magnetic field H proceeds in the direction of z-axis. Field 

components of cylinder with coordinates ( , , )r z  are assumed as displacement vector 

r z(u ,u , u )u =  where ( , ), 0 , 0r zu u r t u u   , concentration of voids volume 

fraction ( , )r t  and temperature component ( , )T T r t . The strain vector i.e. 

dilatation rr ee = e has the strain components
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u u
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  


     


. The Maxwell’s equations have been 

generated by electro-magnetic field in the absence of charge density and displacement 

current as (Das et al. (2013)) 

, 0e, ,
t




     


B
E = H = J B H B .     (2.1) 

 

Figure 2.1: Geometry of the problem 

In continua of deformation, the generalized Ohm’s law is 

( )
u

t






J = E + B .                                                      (2.2) 

Here B is the magnetic field, J is the current density which is neglected due to small 

influence of temperature gradient, 0 H = H h  is the strength of magnetic field, where 

0 0(0,0, )HH , h is the perturbation of magnetic field which is so small that their product 

might be neglected due to linearization of  the basic equations. Therefore, the basic 

governing equation of motion under the impact of electro magneto field, constitutive 

relations, equation of voids volume fraction and heat conduction equation without body 

forces, free from voids equilibrated forces and without heat sources are given as (Cowin and 

Nunziato (1983) and Dhaliwal and Singh (1980)) 

2 2(1 ) ( , , ).L

ij ij i j r              (2.3) 
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Here the quantities having superscript " "L  stands for the local medium. 

2 2

11 12

2 2

12 11

(1 )

(1 )

rr r

u u
c c b T

r r

u u
c c b T

r r
 

   

   

 
      


      

 

.      (2.4) 

Here 
0 0e a  is the elastic nonlocal parameter, 

0a is the internal characteristic length and 

0e is a material constant, ,rr   are the radial and circular stress components, 0T T 

is the change in temperature, 
0T  is the temperature of the medium in its natural state 

assumed to be such that 0/ 1T T  ,  is the absolute temperature, ,r   are the thermal 

modulii, where 11 12 1 13 3( )r c c c       ; 1 3 T    is the coefficient of linear 

thermal expansion (Dhaliwal and Singh (1980)), b is a void parameter, 11 12,c c  are elastic 

constants whose values are as given below 

 
11 12 13

(1 )
,

(1 )(1 2 ) (1 )(1 2 )

E E
c c c

 

   


  

   
, 

where  is the Poisson ratio and E is the Young’s modulus, 
2

2

2

1

r r r

 
  

 
is the 

Laplacian operator.  

2
2 2

2

( )
(1 )rrrr

r

u

r r t

 
 

 
    

 
F ,      (2.5) 

where rF is the component of body force F = (J B)and  is the mass density. 

2
2 2 2

1 2 2
(1 )be MT

t t


      

  
        

  
,           (2.6) 

where , b are the void parameters,  is corresponding to change in voids volume 

fraction field,   is the equilibrated inertia, due to presence of voids 21, are the material 

constants, M  is thermo-void coupling parameter, e  is the cubical dilatation. 
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  



      
       

      

      
     

      

,                        (2.7)              

where eC  is specific heat at constant strain, 0t is the relaxation time parameter which 

represent LS theory, K is the thermal conductivity. 

2.3 Initial and boundary conditions  

The transversely isotropic nonlocal magneto-thermoelastic hollow cylinder with 

voids is taken to be at undisturbed state and rest position initially, thermally as well as 

mechanically so that initial conditions take the forms:  

( ,0) ( ,0) ( ,0) 0,

( ,0) ( ,0) ( ,0)
0 at ,

u r r T r

u r r T r
r a a

t t t






  

  
   

  

    (2.8) 

The boundary conditions are assumed as follows: 

Set I:  

     0 , 0 , 0 at , .rr

T
r a r a

r
  


    


   (2.9) 

Set II:  

     0 , 0 , 0 at , .rr T r a r a           (2.10) 

2.4 Solution of the problem  

Now first part of equation (2.1) yields 

1 1
0 , , ( ).r z z

e e

HH E H
rE

t t r t r




 

   
   

    
   (2.11) 

The second part of equation (2.1) gives  

1
0 , , ( )z

r z

H
J J J rH

r r r
 

 
   

 
,      (2.12) 

where , , ) , ( , E , E ) and ( , , )r z r z r z(H H H E J J J   H = E J . 
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The third part of equation (2.1) yields that in radial direction, no perturbed field is applied 

initially i.e. 0rh

r





which implies that 0rh  . 

From equation (2.2) the modified Ohm’s law yields 

, ,r r e z z z e

u u
J E J E H J E H

t t
      

    
       

    
.   (2.13) 

From equation (2.11) as 0rJ  , which implies that 0rE  . 

To eliminate , ,r zJ J J and using equations (2.1–2.2) and (2.13), we obtain 

2

2

1 1
( )

( )

1 1 1

( )

e

z z z
z z

e

H u
rH H

t r r r r t

H H H u u
H H

t r r r r t r t


 





       
     

        


           
                  

.  (2.14) 

Here 1`( )e  is magnetic viscosity. In setting the term 0H h H , the perturbation of 

magnetic field h is small in comparison with strong initial magnetic field 0H , the equation 

(2.14) can be written as 

2

02

1

( )

1 1

( )

e

z z z

e

H h h

t r r r

H h h u u
H

t r r r t r r

  





  
   

    


        
             

.    (2.15) 

The second part of equation (2.15) yields 0z

u u
h H

r r

 
   

 
due to perfect electrical 

conductor, the magnetic viscosity (1/ ) 0 ase   , hence no perturbation has 

been observed at  . Therefore, the equation (2.5) reduces to  

2
2 2 2

0 2

( )
(1 )rrrr

e

u u u
H

r r r r r t

 
  

    
      

    
.   (2.16) 

Substituting constitutive relations form equation (2.4) in equation (2.16) we obtain 

2 2 2
2 20

2 2 2

11 11 11 11

1
1 (1 )e r

H u u u b T u

c r r r r c r c r c t

  


      
         

      
.  (2.17) 
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Applying divergence to equation (2.17) we get 

2
2 2 2 2 2

2

11 11 11

(1 )r
h

b e
R e T

c c c t

 
 


       


,     (2.18) 

where 
2

0

11

1 ,e
h

H u u
R e

c r r

 
   


. 

We set up following non-dimensional parameters to remove the complexity of above 

equations 

0 0 0

11

12
0

0 11

2

11 2 0 0

2

1 11 11

2

2

11

1 1
( , , ) ( , , ) , ( , ) ( , ), ( , ) ( , ) ,

, ,

, , , , ,

,

xx rr

r
R

c
U x u r t t

a a c

T c
c

T c

c c T T
c

a a c c

a b b
b b

c

 




       

   
    

 










   




   



     


 
 

.   (2.19) 

Using non-dimensional parameters from equation (2.19) in equations (2.4), (2.6), (2.7) and 

(2.18), the non-dimensional form of equation have been obtained 

2 2

0 0

2 2

0 0

(1 )

(1 )

x xx R

x

U U
c b

x x

U U
c b

x x
 

   

   





 
      


       

 

,     (2.20) 

2
2 2 2 2 2

0 2
(1 )h x x R x x

e
R e b   



 
        


,     (2.21) 

2
2 2 2

1 2 3 02 2

1

1
1 (1 )x xa a e a


   

  

  
         

  
,   (2.22) 

2 2
2

0 0 4 52 2
( )x a e a  

   

       
         

      
,0    (2.23) 

where  

2 2 2 3

1 0
1 2 3 4 5 2

, , , ,T

R

a b M T cMa
a a a a a

K

   

    

  



  
    


, 
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2
* 2 211 0

1

11 11

1
, , , , .e r

T x

e

c C a T
x

K c C c c x x x

  
  

 


   

        
  

 

We introduce time harmonics vibrations from Pierce (1981): 

   , , , , ie e e      ,       (2.24) 

where  
a

c


   is the circular frequency. 

Using (2.24) in equations (2.20–2.23), we get 

 

*0

*

0

1
1

1 1

R
xx

e
c

b
Ux

c b
x







 


        
            

    

,     (2.25) 

2 2 2

11 12 13

2

21 22 23

2

31 32 33

( ) 0

( ) 0

( ) 0

x x x

x

x

A e A A

A e A A

A e A A







       


       


      

,     (2.26) 

where  
2

11 12 132 2 2 2 2 2

0 0 0

, , R

h h h

b
A A A

R R R



  


  

     
, 

2 2 2* 2 2
* *3 1 02 2 1 1

21 22 23 1 2* * * 2 2

1 1 1 1 1

, , , ,
aa a a i

A A A a a
a a a

   

 

   
     , 

2 * 2 2 * * 1 * 1

31 0 4 32 0 5 33 0 0 0, , , ,A a A a A i i                    . 

In order to obtain non-trivial solution for the unknown parameters , ,e   in equation 

(2.26), the determinant of the coefficient matrix in equation (2.26) vanishes which leads to 

the following equation: 

6 * 4 * 2 *( )( , , ) 0x x xL M N e         ,     (2.27) 

where  *

33 11 22 12 21 13 31( )L A A A A A A A     , 

*

23 32 22 33 11 33 11 22 12 21 33

12 23 31 13 21 32 13 31 22

(

)

M A A A A A A A A A A A

A A A A A A A A A

    

  
, 

*

11 22 33 11 23 33( )N A A A A A A  . 
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This is to be analyzed that the solution of equation (2.27) which is bounded for x , for 

this there is a requirement of the roots with positive real parts i.e. 

Re( ) 0, 1, 2, 3)ik i   . Therefore, roots ; 1, 2, 3ik i   of equation (2.27) have been 

achieved as given below: 

   

 

* *

1 2

*

3

1 1
2 sin , ( 3 cos sin ) ,

3 3

1
( 3 cos sin )

3

k A B L k L A B B

k L A B B

    

  

, 

where, 

*3 * * *

*2 * 1

*3

2 9 27 1
3 , , sin ( )

32

L L M N
A L M C B C

L

 
     . 

Consequently, the complete solution of equation (2.27) might be written as  

 
3

0 0
1

( ) ( )i i i i
i

PJ k x QY k x


  ,      (2.28) 

 
3

0 0
1

( ) ( )i i i i i
i

e R PJ k x QY k x


  ,      (2.29) 

 
3

0 0
1

( ) ( )i i i i i
i

S PJ k x QY k x


  ,      (2.30) 

where,  

24 2

21 21 3313 12 23 13 22

4 2 2

11 22 12 21 11 22 22 31 21 32

23 31

31

)
,

( )

(( )
ii i

i i

i i i

Ak A A A k A A
R S

k A A A A k A A A

k A A A A

k A A A A


  

    




. 

Here , ; ( 1, 2, 3)i iP Q i  are constants that depend on  only. Here 0 0andJ Y are 

modified Bessel functions of order zero with First and Second kinds only. Resolving cubical 

dilation ( )e from equation (2.29) for displacementU , we obtain 

 
3

1 1
1

1
( ) ( )i i i i i

i
i

U R PJ k x QY k x
k

  .      (2.31) 

On differentiating equation (2.28) with respect to x , the temperature gradient is 

obtained as 

    





 3

1

11

i

iiiii xkYQxkJPk
x

.      (2.32) 

Substituting values of , , ,e U   from equations (2.28–2.31) in equation (2.25) we get  
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3
0 0

0 1 0 1

1

1 1
( ) ( ) ( ) ( )xx i i i i i i i i i i

i i i

c c
P Z J k x R J k x Q Z Y k x RY k x

k x k x




     
        

    
 , (2.33) 
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0 0

0 1 0 1

1

1 1
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i i i

c c
P Z J k x R J k x Q Z Y k x RY k x

k x k x
  



     
        

    
 ,  (2.34) 

where 0, , 1,2,3i i i R i i i RZ R b S Z c R b S i          . 

2.5 Frequency equations 

Substituting the equations (2.29) to (2.33) for thermally insulated boundaries in 

equation (2.9) and the equations (2.28) to (2.31) and (2.33) for isothermal boundaries in 

equation (2.10) of transversely isotropic nonlocal thermoelastic cylinder with voids material 

at inner and outer radii 1x and x  for LS model of generalized thermoelasticity. On 

simplifying these equations, we acquire a system of linear equation given below  

0NH  ,         (2.35) 

where 1 2 3 1 2 3( , , , , , )TH P P P Q Q Q and 6 6( ) ; , 1 6ijN m i j to  . Equation (2.35) gives 

us six algebraic homogeneous linear equations with six unknown parameters. A non-trivial 

solution has been obtained if and only if coefficient matrix N diminishes which lead to the 

frequency equation given below: 

0 ; , 1 6ijm i j to  ,       (2.36) 

where the parameters ; , 1 6ijm i j to  have been defined in thermally insulated/ 

isothermal conditions in separate cases as follows: 

Set I: The elements of ; , 1 6ijm i j to in the frequency equation (2.36) for stress free 

thermally insulated boundary conditions are  

 
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. (2.37) 
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Set II: The elements of 1 2 3 4, , , ;j j j jm m m m j 1 to 6  remains same as in (2.37). The 

remaining elements of ijm in the frequency equation (2.36) for traction-free isothermal 

condition are  

    5 0 5 0; , 1,2,3, ; 1,2,3; 4,5,6 .j i j im J k i j m Y k i j    

  

 (2.38) 

The elements of 2 4 6, , ( 1 6)j j jm m m j to are obtained by inserting  along with ik , 

in the elements of 1 3 5, , ( 1 6)j j jm m m j to . 

2.6 Deduction of analytical results  

2.6.1 Generalized transversely magneto thermoelastic cylinder with 

voids 

If we ignore non-locality effect i.e. 00  , then the analysis is reduced to 

generalized transversely isotropic magneto thermoelastic cylinder with voids material. 

2.6.2 Classical magneto thermoelastic cylinder 

If we establish thermal equilibrium and the nonlocal parameter, voids constants and 

relaxation time parameter are ignored i.e. 0 0  , 1 2 0b M       and 0 0t   

then the analysis of free vibrations has been reduced to the coupled thermoelastic cylinder 

and the governing equations of the analysis are consistent with Das et al (2013) in the 

absence of three-phase-lag relaxation time parameters. 

2.6.3 Generalized thermoelastic LS model transversely isotropic 

cylinder 

If again the nonlocal parameter, magnetic field constants and voids constants are 

ignored i.e. 0 0  , 0 0e H   and 1 2 0b M       , then the analysis has been 

reduced transversely isotropic thermoelastic hollow cylinder whose governing equations and 

free vibration analysis are consistent with Sharma et al (2014) in the absence of functionally 

graded materials. 
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2.6.4 Elastic cylinder 

  If the constants i.e. nonlocal, voids, magneto, relaxation times and thermo-

mechanical are removed i.e. 0 0  , 1 2 0b M       , 0 0e H   , 0 0t  and 

0R T   , then the analysis has been reduced to transversely isotropic elastic cylinder 

which completely agree with Kele and Tutuncu (2011) in the absence of functionally graded 

materials. 

2.7 Numerical results and discussion 

Some numerical simulations and computations have been proposed for the 

authentication of analytical results in transversely isotropic nonlocal magneto-thermoelastic 

hollow cylinder with voids material. The numerical results have been performed for 

generalized thermoelasticity (GTE), coupled thermoelasticity (CTE) and elasticity (E) in the 

absence and presence of magnetic fields for nonlocal and local thermoelastic hollow cylinder 

by taking ratio of outer to inner radius 1.5, 2.0  . Mathematical modeling has been 

prepared for the transversely isotropic magneto-thermoelastic solid with voids material 

single crystal of zinc whose physical constant values are given in SI units (Chadwick and Seet 

(1970))  

11 2 11 2 6 2 1
11 12

2 1 1 2 1 1 3 3

0 0

1.628 10 , 1.562 10 , 5.75 10 deg ,

1.24 10 deg , 3.9 10 deg , 7.14 10 ,

296 , 0.05 , 10

r

e

c Nm c Nm Nm

K Wm C JKg Kg m

T K

 



 

   

    

      

     

  

 

And voids parameters are: 

15 2 5 6 2 2

10 2 10 2
1 2

1.753 10 , 3.688 10 , 2.0 10 deg ,

1.475 10 , 1.13849 10

m N M Nm

Nm b Nm

 

 

   

 

     

    
 

The magnetic field parameters have been assumed as 74 10 / ,e H m     

8
0 10 /H A m  from Othman and Hilal (2017). The value of nonlocal parameter has been 

calculated as 3102.20 
 
from Bachher and Sarkar (2019). The secular dispersion relations 

have been acquired from assumed boundary conditions, which are generally compound 

transcendental equations, give us the values in the form of complex numbers (real as well as 

imaginary parts) due to the occurrence of dissipative term in heat conduction equation (2.7). 

The simulations have been applied to equation (2.36) for the cases of thermally insulated 

boundary conditions in correct to five decimal places.  
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The functional numerical Iteration technique has been applied to evaluate the roots 

of equation (2.36), which is of the type ( ) 0f   . The substitution of ( )  is required 

so that the sequence ( )n of iterations has been generated for essential accuracy level. 

Here, if 0 has been assumed the initial approximation of the root, then we have

1 0( )   , 2 1( )   , 3 2( )    and so on and generally we obtain 

1 ( ); 1,2,3,...n n n     as reported in Sharma and Walia (2007). The required 

condition ( ) 1   for all I , then the approximations will be convergent to the actual 

value a  of the root, provided 0 I  , here I is assumed interval of the root as 

expected. The condition for numerical convergence i.e. 1n n    , where   has been 

chosen small arbitrary number selected randomly to accomplish the required level of 

accuracy, which might be satisfied. Therefore, the above process is repeated continuously 

for the values of the frequency parameter  (real as well as imaginary part) many times 

until we obtain desired accuracy level. The numerically analyzed complex values 

(frequencies) of  might be written as
m m m

R Ii    . The real part and imaginary part 

has been considered as natural frequencies 
m

R R  and dissipation factor 
m

I I 

respectively. The value of m is assumed as mode number, corresponds to the root of the 

equation. The numerically simulated natural frequencies have been presented graphically 

for theories of GTE, CTE and E thermoelasticity for nonlocal/local thermoelastic hollow 

cylinder in presence and absence of magnetic field. The real part of the root of frequency 

equation is denoted as natural frequencies ( )R .  The natural frequencies ( )R  against 

mode number ( )m for nonlocal/local elastic cylinder at outer to inner radius ratio 1.5

have been shown graphically in Figs. 2.2(a, b) to Figs. 2.3(a, b) for different models of 

generalized thermoelastic cylinder with voids in presence and absence of magnetic field. 

Here 2.3(a) represent vibrations with magnetic field and 2.3(b) represent vibrations without 

magnetic field. It has been inferred from Fig. 2.2 (nonlocal elastic material) and Fig. 2.3 (local 

elastic material) that the variation of vibrations are low initially and with increasing values of 

m , the variation of vibrations go  on increasing. On removing nonlocal, voids and magnetic 

field parameters from the governing equations and field functions, therefore, frequency 

equations (2.35) and (2.36) have been modified accordingly and presented for natural 

frequencies versus mode number in Fig. 2.3(c). The variation of natural frequency vibrations 

go on increasing with increasing mode number. The behavior of natural frequency vibrations 
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in the Fig. 2.3(c) has similar variation with the qualitative nature of earlier published 

manuscript Sharma (2020a). The behavior of vibrations is lower in the presence of magnetic 

field in contrast to the absence of magnetic field for nonlocal and local elastic materials. The 

roots of frequency equation might be presented in real and imaginary parts which have been 

assumed as quality factor related to thermoelastic damping. The fractions of lost energy per 

cycle of vibrations, has been calculated from Moosapour et al. (2014) as 

 
 

1
2 2 2Re( ) Im( )

2 Im( )

m m
R I

m
I

Q
  




.  

 

Figure 2.2(a): Natural frequencies ( )R versus mode number ( )m for different models of 

thermoelasticity at 1.5  in nonlocal elastic cylinder with voids with magnetic field. 
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Figure 2.2(b): Natural frequencies ( )R versus mode number ( )m for different models of 

thermoelasticity at 1.5  in nonlocal elastic cylinder with voids without magnetic field. 

 

 

Figure 2.3(a): Natural frequencies ( )R versus mode number ( )m for different models of 

thermoelasticity at 1.5  in local elastic cylinder with voids and magnetic field. 
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Figure 2.3(b): Natural frequencies ( )R versus mode number ( )m for different models of 

thermoelasticity at 1.5  in local elastic cylinder with voids and without magnetic field. 

 

Figure 2.3(c): Natural frequencies ( )R versus mode number ( )m for different models of 

thermoelasticity at 1.5  in local elastic cylinder without nonlocality, viods and magnetic 

field. 



Analysis of Vibrations of Electro-Magneto Transversely Isotropic Thermoelastic Materials with Voids 

42 

 

Figure 2.4(a): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 1.5  in nonlocal elastic cylinder with voids with magnetic field. 

 

Figure 2.4(b): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 1.5  in nonlocal elastic cylinder with voids and without magnetic field. 
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Figure 2.5(a): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 1.5  in local elastic cylinder with voids with magnetic field. 

 

Figure  2.5(b): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 1.5  in local elastic cylinder with voids and without magnetic field. 
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Figure 2.6(a): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 2.0  in nonlocal elastic cylinder with voids with magnetic field. 

 

Figure 2.6(b): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 2.0  in nonlocal elastic cylinder with voids without magnetic field. 
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Figure 2.7(a): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 2.0  in local elastic cylinder with voids with magnetic field  

 

Figure 2.7(b): Frequency shift ( )Shift versus mode number ( )m for different models of 

thermoelasticity at 2.0  in local elastic cylinder with voids without magnetic field. 
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Figure 2.8(a): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 1.5  in nonlocal elastic cylinder with voids with magnetic field. 

 

Figure 2.8(b): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 1.5  in nonlocal elastic cylinder with voids without magnetic field. 
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Figure 2.9(a): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 1.5  in local elastic cylinder with voids  with magnetic field. 

 

Figure 2.9(b): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 1.5  in local elastic cylinder with voids without magnetic field. 
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Figure 2.10(a): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 2.0  in nonlocal elastic cylinder with voids with magnetic field. 

 

Figure 2.10(b): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 2.0  in nonlocal elastic cylinder with voids without magnetic field. 
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Figure 2.11(a): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 2.0  in transversely isotropic local elastic cylinder with voids with 

magnetic field. 

 

Figure 2.11(b): Thermoelastic damping ( )FD versus mode number ( )m for different models 

of thermoelasticity at 2.0  in transversely isotropic local elastic cylinder with voids 

without magnetic field. 
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The value of denominator multiple with 2  arises because of the generated mechanical 

energy of nonlocal elastic hollow cylinder with voids material is relative to real part. This has 

been observed from computations that frequencies with imaginary part are less in 

comparison with real part. Therefore thermoelastic damping (inverse quality factor) 1( )Q  

for the cases of GTE, CTE and E has been obtained from Sharma et al. (2014) as

1 2 I

R

Q 



. Here thermoelastic damping 1Q has been denoted as FD . The fractional 

error obtained from Iterative computation is ( )K in the real part of frequency m

R  is 

defined as  ( ) 1 1Re( ) Re( ) / Re( )
K m k m k m k

R R R
       

 

 (Moosapour et al. (2014)).  

Therefore the error 
*( ) will go down below the accepted value and the process of iteration 

ends. Hence the frequency shift )( shift  of nonlocal generalized transversely isotropic 

thermoelastic hollow cylinder with voids material is defined as

*

( )E
R R

shift E
R

 
 



(Sharma et al. (2014)). Here 
*  stands for generalized thermoelasticty (GTE), coupled 

thermoelasticity (CTE) and elasticity (E). Fig. 2.4 has been presented for frequency shift 

( )shift versus mode number ( )m for different models of thermoelasticity at normalized 

thickness 1.5  for nonlocal elastic cylinder with voids in presence and absence of 

magnetic field. It is observed from Fig. 2.4(a) that initially the variation of frequency shift 

vibrations are larger, as we move from left to right, the behavior of vibrations dip between 

3.0 6.0m  , and go on increasing to become linear at 9.0m  . Fig. 2.4(b) depicts that 

the variation of frequency shift vibrations is initially low, achieve peak value at 2.0m  and 

as the value of m increases, the variation of vibrations go on decreasing. The Fig. 2.5 has 

been represented for frequency shift ( )shift versus mode number ( )m for the models of 

thermoelasticity i.e. GTE, CTE and E at normalized thickness 1.5  for local elastic cylinder 

with voids in presence and absence of magnetic field. It is observed from Figs. 2.5(a) and 

2.5(b) that initially the frequency shift is low, increases up to 2.0m  , dip at 5.0m  , after 

achieving its magnitude to extreme value, it decreases linearly. This has to be noticed from 

Figs. 2.4 and 2.5 that the variation of frequency shift vibrations is larger in case of GTE in 

contrast to CTE and E. Fig. 2.6 and 2.7 have been shown for frequency shift ( )shift versus 

mode number ( )m for the generalized thermoelastic models i.e. GTE, CTE and E at 
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normalized thickness 2.0  for nonlocal/local elastic cylinders with voids in 

presence/absence of magnetic field. Fig. 2.6(a) depicts that the variations are larger initially, 

with increasing values of mode number, the variations decreases up to 4.0m  , increases 

till 8.0m  , after that its behavior is noticed to be linear. It is observed from Fig. 2.6(b) that 

the variation of frequency shift vibrations is initially low, achieve peak value at 2.0m  and 

as we move from left to right the vibrations become linear at 5.0m  . The Fig. 2.7(a) tells 

that the variation of frequency shift vibrations are low initially, achieve peak value at 

3.0m  , and with increasing values of mode number the behavior of vibrations decreases 

to become linear at 9.0m  . It has been revealed from Fig. 2.7(b) that the behavior of 

vibrations are larger initially, as value of mode number increases the vibrations go on 

decreasing and become linear at 6.0m  . 

Thermoelastic damping ( )FD versus mode number ( )m has been represented in Figs. 2.8 

and 2.9 for the generalized thermoelastic models i.e. GTE, CTE and E at normalized thickness 

1.5  for nonlocal and local elastic cylinders with voids in presence/absence of magnetic 

field. It is observed from Fig. 2.8 that in both the cases i.e. with and without magnetic field 

the variations are larger initially and with increasing value of mode number, the variation of 

thermoelastic damping vibrations dip at 2.0m   increases slightly to become linear. The 

Fig. 2.9 which has been presented for local case depicts that initially vibrations are larger, 

decreases up to 3.0m   and then becomes linear with increasing values of m . The 

thermoelastic damping ( )FD versus mode number ( )m  for different models of 

thermoelasticity i.e. GTE, CTE and E at normalized thickness 2.0  for nonlocal/local elastic 

cylinders with voids in presence/absence of magnetic field have been presented in Figs. 2.10 

and 2.11. Fig. 2.10(a) reveals that initially variation of thermoelastic damping vibrations are 

low, achieve maximum amplitude between 3.0 5.0m  , then decreases linearly as we 

move from left to fight. It is to be noted from Fig. 2.10(b) that the variations are larger 

initially and with an increase in the value of mode number the variation of thermoelastic 

damping achieve its magnitude, then keep on decreasing linearly. It has been revealed from 

Fig. 2.11(a) that initially the variations of thermoelastic damping vibrations are larger, and 

with increasing values of mode number, the vibrations go on decreasing. It is to be noticed 

from 2.11(b) that initially thermoelastic damping vibrations are low, achieve maximum 

amplitude between 2.0 4.0m  and with an increase in the value of mode number the 

vibrations go on decreasing. This has been observed from all the figures that the vibrations 
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are larger in case of GTE in comparison with CTE and elasticity cases. Also due to the effect 

of magnetic field the behavior of vibrations are lower in presence of magnetic field in 

contrast to absence of magnetic field. The behavior of thermoelastic damping is found to 

increase and decrease with increasing value of mode number due to coupling of elastic field 

between mechanical, thermal, voids and magnetic fields. 

2.8 Conclusions 

The free vibrations of electro-magneto transversely isotropic nonlocal thermoelastic 

hollow cylinder with voids material are investigated. With the help of time harmonics the 

governing partial differential equations are resolved into ordinary differential equations by 

applying time harmonics. The outer and inner surfaces of hollow cylinder have been 

considered stress free and thermally insulated/isothermal. From the calculated analytical 

and numerical results/discussions, following conclusions have been observed: 

1. The analytical results for derived frequency equations have been examined 

computationally. 

2. The numerical results for the effect of LS model of generalized magneto 

thermoelastic hollow cylinder have been shown for the field functions such as 

thermoelastic damping and frequency shift with and without magnetic field. 

3. The effect of magnetic field clearly indicates that the behavior of vibrations is 

larger in absence of magnetic field in contrast to presence of magnetic field.  

4. It has been concluded from all the figures that in case of GTE model the 

vibrations are larger in contrast to CTE and E cases due to effect of relaxation 

time parameters. 

5. The natural frequency graphs clearly indicate that with increasing values of 

mode number, the behavior of vibrations keeps increasing. 

6. In observing the behavior of figures, it is observed that after getting maximum 

and minimum amplitudes of variations, the behavior of thermoelastic damping 

becomes linear because of coupling between elastic and thermal fields. 

7. It is noticed that the field functions of free vibrations have been influenced by 

non-locality effect and represented for local and nonlocal cases with and 

without magnetic fields.  
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8. The study might find engineering applications in industry and defense that the 

theories of thermoelasticity i.e. LS and CTE models provide better and easier 

description to allow voids, diffusion and relaxation, where the process of relaxation 

times are comparable. 

9. From the results of the study, researchers receive the motivation to inspect the free 

vibration analysis of conducting elastic, thermoelastic and magneto-thermoelastic 

material with voids as novel applications in continuum mechanics.  

10. The chapter might prove useful applications for those who are working in the field of 

seismology for drilling and mining in the earth’s crust. The study also find 

applications that physicist who are working in field of designing of new materials, for 

researchers in free vibrations in material science, designers of new materials as well 

as in practical situations as in geomagnetic, optics, geophysics, acoustics, and oil 

prospecting etc.  

 


