Synopsis on Development of Automated Detection Technique for Diabetic Retinopathy

JUNE 2020

Submitted for registration in the degree of Doctor of Philosophy

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CHITKARA UNIVERSITY HIMACHAL PRADESH

Submitted by **Parul Datta (PHDENG-1610941016/19065)** Under the joint supervision of

Dr. Prasenjit Das

Associate Professor Chitkara University, HP

Dr. Abhishek Kumar

Assistant Professor Chitkara University, HP

Table of Contents

1
3
5 6
7
8
9
20
21
21
22
23

List of Figures

Figure 1	
Figure 2	
Figure 3	
Figure 4	
Figure 5	
Figure 6	
Figure 7	
Figure 8	
0	

L	ist of Tables
Table 1	

List of Abbreviations

Diabetic Retinopathy
Expectation Maximization
Fast Healthcare Interoperability Resources
Health Level 7
Internet of Things
Non-Governmental Organization
Region of Interest
Self Organizing Map
Times of India
World Health Organization

1. Introduction

There are multiple ways in which a health facility may be designed and defined like in or outpatient facility, out-reach facility etc. In all cases the primary goal is to bring the health services close to the masses. The world leading organisation World Health Organisation (WHO) emphasises that remote health service are where distance is critical factor in providing access to health care for rural and remote communities [1]. But, with the advent of new technologies such as sensors and cloud now people in urban areas can also avail medical services at home. So, there are many forms of services viz. Community Service, Telemedicine or pharmacy, Tele healthcare or remote consulting services and remote monitoring [2, 3, 4]. All these forms of services intend to improve the access of health to people and in many cases provide the unimaginable facilities for people who are suffering from blindness related issues [5]. Almost all kind of medical devices can be connected using microcontroller and wireless modules. Lot of work is now focused on the integration of the medical devices and sensors due to birth of new health care models [6].

Many developed countries have volunteer eye and other kind doctors who spend weeks of their annual vacation performing these operations just for housing and food, so as to create the possibility of a greater throughput than just one doctor can and is usually organized through some trustworthy Non-Governmental Organization (NGO) [7]. But, in case of India, the situation is different. There are few takers for the job for remote areas [8, 9]. Then, the sheer size of India population (1.3 billion) and land size (3.287 million km²) forces us to rethink how the delivery of the health services can do. The inevitable growth in technology also intrigues many researchers and entrepreneurs to develop next generations of medical technology [10].

The initiatives in this context show that epidemiological data collection can lead discovery of new vectors of disease and drugs. But such development is not without challenges. Then, evidences from contemporary literature and associated material shows that old, disable and under privileged may find difficult to adopt such services. It all boils down to logistics, funds, and materials and on the people who can operate such services.

According to one of the recent reports in Times of India (TOI), India has largest number (> 15 million) of blind people and there is an acute shortage of optometrist in India at the same time. It is estimated that 75% of these cases are avoidable and the

problems remain a burning issue due to lack of eye donors, eye banks and eye diseases assessment centres [11]. India has about 12,000 ophthalmologists who do not have time and proper facilities to address the flood of people who require eye surgery or corneal transfer [12]. According to article titled 'Silent thief of sight – Glaucoma on rise' there is a large section of people suffering from glaucoma in India [13]. Glaucoma (is collective name of group of eye conditions as a result of optic disc damage) is said to be the third leading cause of blindness in India. It is clear that for the diagnosis there is a need for more sophisticated and more expensive equipment. Then these treatments need lifelong eye drops usage (expensive for those very poor). Also there is always a need to consult the eye doctors. Hence, the urgent need to develop health services in this context. India is also known as 'diabetes capital' of the world as it is predicted to hit 69.9 million by 2025. But, India does not have pan-India level technology or polity to handle such scale of problem. The problem of diabetes leads to complications of eyes called diabetic retinopathy (DR) [13].

The symptoms of the DR remain hidden and it is in the advanced stages that the signs of this medical condition show up [14, 15]. The symptoms of retinopathy include blurred vision and floaters. In this disease, the blood vessels of the eyes are affected, due to which the vision of the person gets impaired. Consequently, the person becomes less mobile and dependant on others for his daily tasks and the situation becomes more pronounced when the person is living in a remote area and needs medical care in this context. This situation can be overcome by using the latest amalgamation of multiple technologies.

There is an urgent need to upgrade, innovate the various ways to handle diabetics, blindness and eye ailments in India due severity of the problems [16]. The solution lies in implementation of systems that are amalgamation of multiple technologies such as medical sensors, image processing and machine learning algorithms [6]. The amalgamation of these technologies can lead to development of common platforms to diagnose multiple eye ailments such as glaucoma and diabetic retinopathy. Similar set of systems/algorithms can find hints in eyes to find diseases for most common types of the eye ailments. As these algorithms would extract information on the condition of blood vessels (vein and artery), optic disc and other parts of the eye [17, 18, 19]. The information can be formalized for detecting multiple conditions. Confocal scanning and fundus photography can help to detect different stages of diabetic retinopathy. Not only these, other complications related to eye also are assessed.

Fundus Photography is a branch of photography that focuses on the images of eyes and is helpful in detecting eye diseases [20]. This branch of photography can help ophthalmic telemedicine become more powerful [21]. These cameras help to document the retina, the tissues in the eye and the neuro-sensory veins and capillaries in the eye. It is performed with the help of many light coloured filters such as red, blue or special coloured dyes (fluorescein, indocyanine green) [22, 23]. In the real sense, these devices are a kind of digital microscope that has attached digital camera having some prefigured filters to maximize the capturing of eye retina. These digital microscopes are extremely helpful in the diabetic screening process and now with the advent of many wireless technologies, these microscopes can now be remotely controlled using Internet based protocols. Figure 1 gives an example of Fundus Photography.

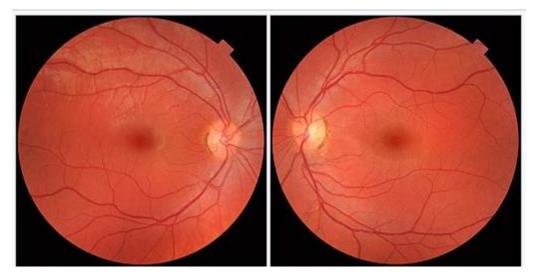


Figure 1: Fundus Photography Images examples [24]

1.1 Confocal Scanning Laser Ophthalmoscopy:

It is another method to capture images of the eyes for identification of the DR and glaucoma medical condition. In fact, in this technology the microscope produces image of high resolution and good quality. It is has been amalgamated with the optical technology to better level of imagery [25]. It scans the eyes in both the directions i.e. horizontal as well as vertically using mirrors. The result is that it is able to stitch the images from different angles into a single medical grade image. The images acquired can be subjected to the image processing function to enhance the optic nerve boundaries. The optic nerves can be further analyzed for their damage.

Technically, however, it should be noted that with all these advancements the images might suffer from the problems of the noise, contamination due to artifacts in the images [24]. At the same time, another observation from different clinical studies shows the quality of images good enough. The technology is easy to implement and handle as it is coupled with the image analysis that are aided with computer algorithms. These days tremendous energy is been diverted to integrate this technology to the detect eye ailments so that the clinical workflows can be optimized for better facilitation of the patients. Figure 2 shows the fundus camera integrated with smart phone to take images of eye retina.

Figure 2: Fundus Camera integrated with Smart Phone [24]

Figure 3 shows the basic scheme of camera, devices and role of doctors in the eye care system. The input and output of the camera are controlled from the smartphone and at the same time the mobile phone services are connected to the eye health care [26].

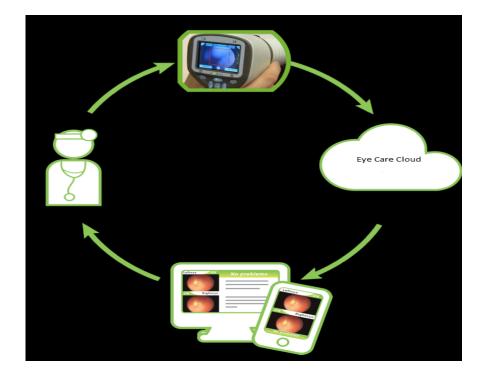


Figure 3: Portable Device Centric Eye Care Workflow [26]

1.2 Eye Care Workflow and Standards of Reporting:

In the context of remote eye care management systems, medical industry standards such as Health Level 7 (HL7) and Fast Healthcare Interoperability Resources (FHIR) are important [27]. These standards provide the various workflows of the work and the standard methods of acquiring, storing and exchanging data between the shared data models. Figure 4 gives a typical workflow case in the context of using fundus photography and computerized record keeping managing eye care centre.

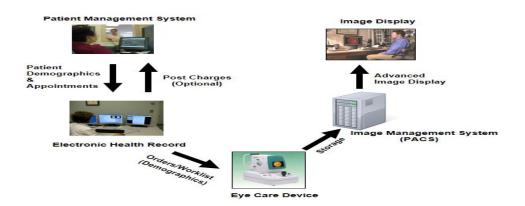


Figure 4: Eye Care Workflow [27]

1.3 Diabetic Retinopathy:

The development of diabetic retinopathy condition is triggered by the diabetic condition - a condition that affects the health of the eye by damaging tissues, blood vessels and blood arteries or by changing the properties of eye tissues. Figure 5 shows eye with DR and normal eye [28]. Figure 6 shows how the difference between a healthy eye and unhealthy eye suffering from diabetic retinopathy. Figure 6 clearly shows that blood vessels weaken and change their morphology and texture. In addition to this, the eye may suffer from unwanted growth of exudates /cotton wool spots that blur the vision and repose to light.

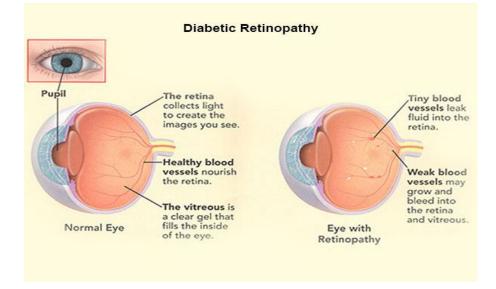


Figure 5: Diabetic Retinopathy [28]

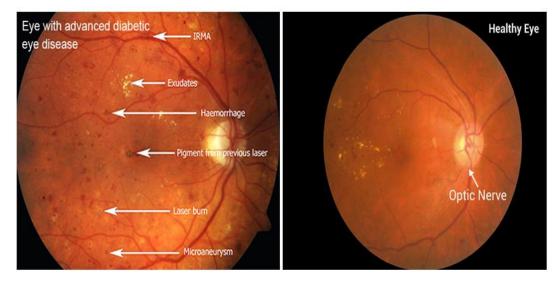


Figure 6 (a): Unhealthy eye

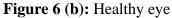


Figure 6 are sampling images shows the healthy and not so healthy conditions in the eyes. These conditions can be captured and processed for making a fully automatic system of detection with help of image processing methods such as image filtering, image segmentation and image feature extraction. The image segmentation algorithms such as global thresholding, K-means superpixel etc. may be used to get the segment the pixels that makes Region of Interest (ROI). After the accurate segmentation, image feature extraction process is required to be applied.

1.4 Computer Algorithms for detection:

The detection and identification of DR medical condition can be done using four types of approaches if the image of the eyes is processed as a mathematical matrix. The image matrix will provide features that would reflect the medical conditions. These four approaches include:

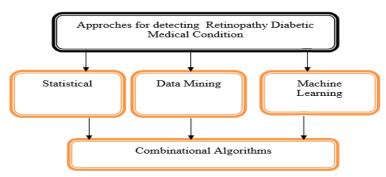


Figure 7: Approaches in the detection

- 1) Statistical Mathematics: In this approach, statistical modelings with the help of regression techniques are typically done. These algorithms construct a trend line based on some feature that can map the optic nerve condition as normal or defective. The features such as the area of the optic disc, neuro-retinal rim area may be used to build a trend line [29]. If there is a deviation from the normal range of area or there are large number outliers in the regression model then we can infer that there is some issue related to an eye ailment. The eye aliment may be related to DR or to glaucoma.
- 2) Data Mining: This is the branch of data science which helps to find insights, patterns, meaning full clusters or groups of data points. In many cases, the researchers have used data mining algorithms to build analytical frequency or cross tables of the diseases related to eyes [30]. They have used algorithms to the group and map the progression of the eye ailment with highly relevant feature information from fundus images. The algorithms include Self Organising Map

(SOM), Expectation Maximization (EM), clustering etc. This approach is normally employed when the image dataset does not have labeled meta-information or simply when the eye images are not marked by the expert. These methods are also referred as unsupervised learning models because no expert person was available to mark/label/group the data or simply it is a case of having a large volume of data and the human experts cannot do the marking in a limited period of time. Grading of fundus images is one of the problems that it faced by current researchers. To solve this problem, researchers are taking help of data mining as well as machine learning [31].

- 3) Data Machine Learning Modelling: This type of mathematical modeling is done when the dataset has rows that are properly labeled or marked. When an expert or doctor identify the medical condition such as bilateral cataract, retinopathy diabetic etc., in the eye image and marks it as per the modality, it is called supervised manual labelling [32]. Such images can be now subjected to supervised learning algorithms. In contemporary literature supervised method is used for detecting eye medical condition which includes decision trees, support vector machine, artificial intelligence algorithms and probability algorithms such as Naïve Bayes. The main requirement of these algorithms is a good size of the dataset if the dataset size is not enough it does not make sense to implement these methods and this is true in case we are using deep learning algorithms [33, 41, 46, 51].
- 4) Combinational Approach: In many cases, a particular approach does not suffice the expected outcome or goal of the study. A combination or sequence of algorithms is required to process in order to achieve goals. Secondly, it must be noted that statistical mathematics is pre-requisite to data mining as well as to the machine learning algorithm. Therefore, the combination of statistical learning algorithms and data mining or machine learning modeling is routine in tasks of data science problems. In the context of the problem undertaken, a combinational approach may work well also.

2. Motivation of Research

Diabetic Retinopathy is one of the leading reason for the loss of sight in developed countries such as the United States. India is already on the way to become diabetic capital of the world. This is quite alarming and this challenge needs to addressed by researchers, doctors, and governments. The Indian government has taken a lot of steps to curb this medical epidemic with establishments of a large number of eye clinics across India. It is now time to connect such clinics and eye clinical procedures to get connected. The availability of portable and wireless connected cameras can help to accelerate the process. India has a shortage of eye specialists and associated paramedics of this field, therefore this work is highly relevant in the context of India to work with. Moreover, the methods involved in the detection of diabetic retinopathy requires a lot of training and is time-consuming. It takes about 2-3 working days to get a report on the modalities, which leads to delayed follow-up and treatment. Due to this delay, a person coming from any area is almost blind undergoing an unwanted ordeal.

From this research work, novel approaches and frameworks to overcome the challenges of manpower, delay in clinical procedure and automated eye analysis for detection of eye problems will be created. Highly accurate algorithms based on machine learning and fundus images will enhance the medical field of detecting/identification of diabetic retinopathy.

3. Literature Review

This section list the recent works in the area of detection of diabetic retinopathy. The work here gives information on the different types of algorithms, tools and databases that are in use in the domain of detection of diabetic retinopathy.

Year of	Author(s)	Title	Source	Summary
Publication				
2020	S. Mirza, et.	Effective	Springer	Clinical record of 734
	al.	Prediction of		patients,
		Type II Diabetes		Used SMOTE, MLP,
		Mellitus Using		Decision Tree, SVM
		Data Mining		Accuracy 94.70%
		Classifiers and		
		SMOTE		
2020	P. Porwal et.	IDRiD: Diabetic	Medical Image	Dataset: IDRiD
	al.	Retinopathy –	Analysis Journal,	Performed
		Segmentation	Elsevier	segmentation, grading
		and Grading		and localization of

Table 1: Literature Review

		Challenge		retinal landmarks
2019	Juan J.	Automatic	Biomedical	Dataset used
	Gómez-	glaucoma	Optics express	1)Drishti-gs,
	Valverde et al	classification		2) Esperanza
		using color		Algorithm
		fundus images		CNN
		based on		The goal of the study
		convolutional		comparative analysis
		neural networks		of CNN architectures
		and transfer		types with best
		learning		accuracy to detect,
				glaucoma
				work validated using
				objective and
				subjective assessment
2018	Ahmed	An Integrated	IEEE Journal	Retina Eye scan
	Etanboly el at	framework for		images of OCT
		the automatic		(Zeiss Cirrus HD-
		clinical		OCT 5000)
		assessment of		
		diabetic		Two-stage deep
		retinopathy		fusion classifier based
		grade using		on reflectivity,
		spectral domain		curvature, and
		OCT images		thickness of features
				of the retina.
				Receiving Operating
				Characteristics (ROC)
				were computed with
				the claim that they are
				better than the KNN
				,Random Forest and

				K-start classifiers
2018	Ramachandran	Automated	The Royal	296 patient images of
	et al	diabetic	collage of	diabetic condition
		retinopathy	ophthalmologist	were examined and
		detection in		the eye images were
		smartphone-		captured using FOP
		based fundus		smartphone.
		photography		
		using artificial		The output of the
		intelligence		algorithm validated
				with the help of
				Artificial Intelligence-
				based software
				EyeArt
2018	Sumaiya	The Role of	Research Gate	Textures feature used
	Pathan et al	Color and		for the detection of
		Texture Features		Glaucoma
		in Glaucoma		Comparative study of
		Detection		SVM and Neural
				Network Algorithm
2018	Kemal Adem	Exudate	Expert Systems	Exudate
		detection for	With	Segmentation Using
		diabetic	Applications	Canny Filter and
		retinopathy with	,Elsevier	Hough transformation
		circular Hough		Used for
		transformation		Segmentation.
		and		
		convolutional		Fundus Dataset used:
		neural networks		DiaretDB0,
				DiaretDB1 &
				DrimDB.
				CNN used as

				Classifier , Results claimed 98 to 99 % accuracy for detection
				DR
2018	Avula Benzamin and	Detection of Hard Exudates		The dataset used in this work isIDRiD
	Chandan	in Retinal	Arxiv Repository	(Eye Clinic located in
	Chakraborty	Fundus Images		Nanded, Maharashtra,
		Using Deep		India).
		Learning		
				Convolution Kernels
				Of Neural Network
				(CNN) used for
				detection.
2018	Khojasteh et al	Exudate	PubMed	Comparative study of
		detection in		CNN, Pre-Trained
		fundus images		Residual Networks
		using deeply-		and Discriminative
		learnable		Restricted Boltzmann
		features		Machines for exudate
				detection .
				Outcome of the study
				, ResNet-50 in
				combineaiton with
				Support Vector
				Machines works best
				with highes accuracy
2018	Zheng et al	Detection of	PubMed	Deep Convolution
		exudates in		Neural Networks
		fundus		have been used to
		photographs		differentiate normal
		with imbalanced		and abnormal exudate

		learning using		growth in the eyes
				growin in the eyes
		conditional		
		generative		Since, the dataset was
		adversarial		small ensemble
		network		convolutional neural
				network was adopted
				and to overcome the
				problem of imbalance
				conditional generative
				adversarial network
				as used. This way the
				authors were able to
				get accuracy as high
				as 95%
				Dataset tested on
				these include
				DiaReTDB1, HEI-
				MED and
				MESSIDOR
2018	Shilpa Joshi	A review on	Biomedical and	Discusses the various
	et al	exudates	Pharmacotherapy	approached done by
		detection	journal, Elsevier	researchers for
		methods for		segmenting exudates,
		diabetic		optic disc and
		retinopathy		detection of DR
				methods. Review
				techniques include
				thresholding,
				clustering,
				classification and
				other mix methods.

2018	Marin D et al	An exudate	PubMed	The authors have
		detection		created a method
		method for		called Graphical
		diagnosis risk of		Abstract Diagnoses,
		diabetic macular		which is based on
		edema in retinal		classification
		images using		technique for
		feature-based		detecting risk of
		and supervised		diabetic macular
		classification		edema
2018	Manish	Modular Neural	Springer,	Modality : DR
	Sharma et al	Network for	Conference	
		Detection of	Proceedings	Dataset used is
		Diabetic		DIARETDB0.
		Retinopathy in		
		Retinal Images		Algorithms used is
				Modular Feedforward
				Neural Network
				(MNN).
				Accuracy 100%
				normal, 88 % for
				abnormal retina
				condition
2018	Zhao H et al	Supervised	PubMed	Synthetic Images
		Segmentation of		used for research
		Un-Annotated		work .Created with
		Retinal Fundus		help of Relativistic
		Images by		GAN algorithm.
		Synthesis		
				Purpose of reach
				reduce semantic gap
				between the query
				image and real fundus

				image in context of
				segmentation of the
				fundus images .
				0
2018	Syedia	Fundus Image	Current Medical	The paper has two
	Tahseen	Segmentation	Imaging	main objectives :
	Fatima	and Feature	Reviews	1) Compute Cup to
	Bokhari et al	Extraction for		Disk Ratio.
	Doknari et ar	the Detection of		2) Segment Optic
		Glaucoma: A		disc.
				disc.
		New Approach		
				Dataset Size : 200
				images
				Modality : Glaucoma
				Segmentation Method
				: Circular Hough
				Transformation &
				Active Contour
				Modelling
2018	Baidaa Al-	Dense Fully	Symmetry	Objective of Work :
	Bander et al	Convolutional	Journal	Segment optic disc &
		Segmentation of		Cup
		the Optic Disc		
		and Cup in		Segmentation
		Colour Fundus		Algorithm:
		for Glaucoma		Comparative study of
		Diagnosis		CNN and classical
		_		segmentation
				methods.
				Modality : Glaucoma
				Site and Sit
2018	Y. Hagiwara	Computer-aided	Science Direct	Review on algorithms
2010	1.11451 *** 414		Selence Direct	iterien on angoriannis

	et al	diagnosis of		, approaches and
		glaucoma using		strategies on the art
		fundus images:		and science of
		A review		diagnosis
				1) Elements of
				algorithms that help
				in detection glaucoma
				(Data->Image
				Segmentation-
				>Feature Extraction-
				>Deep Learning
				Classifications).
				2) Deep learning
				approaches
2018	Panda R et al	Automated	PubMed	Key Objective :
		retinal nerve		Detection Fibre layer
		fibre layer defect		of Retina for analysis
		detection using		of glaucoma
		fundus imaging		condition.
		in glaucoma		
				Algorithm :
				RANSAC data
				fitting to find width of
				fibre layer.
				Results: AUC close to
				0.87.
2018	Tamonash	Multicolour	NCBI	Comparative study of
	Basu et al	imaging for	PMC library	the MCI
		retinal nerve		Multi-Color imaging
		fibre layer defect		scanning on multiple

		in glaucoma		patients.
2018	SK Saha et al	Color fundus	Pub Med	Review of Image
		image		Registration
		registration		frameworks.
		techniques and		a) Automated
		applications for		Systems of
		automated		Registration of
		analysis of		Fundus Images
		diabetic		b) Longitudinal
		retinopathy		methods of image
		progression: A		registration
		review		
2018	Piyasena et al	Development	PubMed	
		and Validation		Description of
		of a Diabetic		protocol for screen
		Retinopathy		DR using Hand Held
		Screening		devices.
		Modality Using		
		a Hand-Held		
		Nonmydriatic		Objective and
		Digital Retinal		Subjective validation
		Camera by		show protocol and
		Physician		working with hand
		Graders at a		held devices is robust
		Tertiary-Level		
		Medical Clinic:		
		Protocol for a		
		Validation Study		
2017	Sameer Kanse	Retinal Fundus	Journal of	Dataset: IPN data set,
	and	Image for	Intelligent	ZEISS data set
	DinkarManik	Glaucoma	Systems	DIARETDB1
	Yadav	Detection: A		MESSIDOR .
		Review and		Features such as

		Study		Texture, Descriptive
		-		statistics are good
				features that can be
				mapped to eye
				modalities
				Key Findings : Cup,
				Disc areas and Blood
				Vessels is one
				indicator of
				Glaucoma, KNN
				SVM is appropriate
				for automating the
				Glaucoma Detection
2016	Toy BC et al	smartphone-	PubMed	Key Objective: Find
2010	TOY DC Et al	based dilated	I ubivied	suitability and
		fundus		Validate the
		photography and near visual		smartphone image
				quality for checking
		acuity testing as		eye ailments.
		inexpensive		Results : The values
		screening tools		of Correlation, AUC/
		to detect referral		Kappa statics,
		warranted		Sensitivity and
		diabetic eye		specificity show the
		disease		smartphone is valid
				and inexpensive
				screen tool
2016	Adam MK et	Quality and	PubMed	
	al	Diagnostic	JAMA	Dataset : 188 images
		Utility of		Objective : Can
		Mydriatic		smartphone produce
		Smartphone		diagnostic quality
		Photography:		images

		The Smartphone		Outcome : Evaluation
		-		
		Ophthalmoscopy		of the images shows
		Reliability Trial		that smartphone can
				be used for the
				diagnoses of eye
				ailments
2016	Bastawrous A	Clinical	PubMed	Dataset(s) : 2152 +
	et al	Validation of a		2920 images captured
		Smartphone-		with smartphone (non
		Based Adapter		clinical)
		for Optic Disc		Main Objectives :
		Imaging in		Objective and
		Kenya		Subjective Design,
				Grading of Camera
				device/images as per
				the modality.
				Result : Insignificant
				difference between
				the objective and
				subjective validation
2015	Ramachandran	Validation of	PLOS journal	Dataset :301 Subjects
	Rajalakshmi et	Smartphone-	5	, 602 Fundus Images
	al	Based Retinal		Main Objective :
		Photography for		Validation & Grading
		Diabetic		of Images generated
		Retinopathy		by smartphone fundus
		Screening		photography camera.
		Sereening		Outcome : Sensitivity
				-
				and specificity of the
				images above the
				range of 97%

2015	Andrea Russo	A Novel Device	Journal of	Explanation and
	et al	to Exploit the	Ophthalmology	description of a
		Smartphone		device based on the
		Camera for		principle of
		Fundus		ophthalmoscopy fundi
		Photography		
2014	Christopher J	Rapid Grading	PubMed	Dataset : 230 Images
	Brady et al	of Fundus		Key Objective:
		Photographs for		Gradation of the
		Diabetic		Fundus Images using
		Retinopathy		Crowd Sourcing.
		Using		Outcome :
		Crowdsourcing		The values of ROC
				and AUC gives
				confidence that
				crowdsourcing can
				used for grading of
				the images

4. Current State of Art

Evidences in the current literature shows that the field of detecting eye ailments is undergoing rapid changes. Image processing algorithms are playing important role in detecting different modalities of eye diseases. It can be observed that the current trend in context of this domain is the use of hand held, smart phones, IoT medical devices that can capture fundus scanning based protocol images. Large section of the researchers is using eye image dataset that are in public domain. It is also noteworthy that labeled, verified and annotated images by specialist for the modality are also available but are limited. The most popular methods in image processing include the use of contrast improvement methods, active counter modeling, Circle Hough, Global thresholding, using Image gradient matrix for detecting the size of optic disc. In the context of detecting abnormality of blood vessels, use of image filters and thresholding methods seems to work well. In case of detecting the exudates and tissue matter that blur the vision due to diabetic conditions clustering methods are popular. It can be observed that in both the cases of retina diabetic and glaucoma medical conditions, most researchers are using machine learning algorithms to automate the process of detection. Most of them prefer this over statistical methods that are based on the regression etc. Evidences in current literature show that neural networks are most popular methods for constructing detection systems but few have addressed the problem of imbalance class dataset, small dataset and other problems such as degree of overlapping between the classes. Python and R machine learning and image processing libraries are mostly used for construction of such systems. Some researchers have also used Matlab and other statistical tools for testing and validation of the results. The popularity of the tools can be attributed to the fact that python and R are open and community sources.

5. Objectives

1. Conduct an explorative study of literature, algorithms and methods involved in image-based detection of DR.

2. Develop a segmentation and extraction algorithm for supporting detecting algorithms of DR.

3. Develop optimized machine learning models that automate the detection of DR.

4. Compare and validate the results for reproducibility of algorithms on accuracy, recall, precision, f1-score.

6. Methodology

This section gives information on the proposed methodology that will be undertaken for overcoming the challenges. For better understanding of the procedure followed in this research work Figure 8 may be referred. It can be observed from the figure that, the first step in this study besides conducting literature survey of the current development in fundus images of DR is to prepare the dataset that is suitable for running the machine and deep learning modelling.

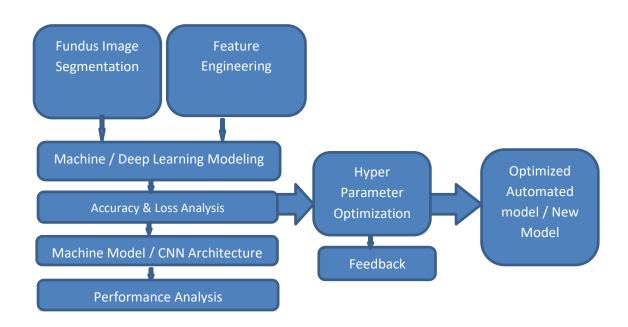


Figure 8: Procedure to be followed

Step 1: In this step, a dataset of fundus images will be analysed and organised in a file server. The images will be evaluated for their quality and other quality parameters. Fundus Image Preprocessing might be required and the following steps might be required:

- 1) Image Resolution Improvement
- 2) Image Denoising
- 3) Image Registration and alignment before classification

Step 2: In this step fundus images will be subjected to multiple segmentation algorithms for the extraction of the blood vessels. Based on the outcome of the multiple segmentation algorithms a new / optimized segmentation algorithm will be developed. This is primarily done because in DR the major impact of the DR is on blood vessels. There is an increase in number of blood vessels and these vessels are sized in terms of thickness and length also changes as compared to the normal healthy blood vessels.

Step 3: In the third step, the labelled segmented dataset will be subjected to the feature engineering process. For feature engineering, the first step is to select appropriate features that can map the DR medical condition from the image. Since, the size, shape, colour of the blood vessels and eye changes due to DR.

Morphological, geometric and features related to intensity of the images will be selected initially. Once this formation of the feature dataset is completed, the dataset will be subjected to the feature selection process. In feature selection method, the dataset will be subjected to multiple statistical methods such as correlation, random forest, importance ranking using statistical test etc.

Step 4: In this step, the selected features will be subjected to the machine selection modelling process and hyper-parameter based fine tuning will be done. Multiple machine learning and deep learning models will be evaluated and based on the feedback a new algorithm will be formulated that works well the DR detection and classification tasks.

Step 5: In this step, the performance evaluation of the models / architectures that have been constructed in the last step will be done. The performance analysis may include metrics such as accuracy, recall, precision and f1-score.

Step 6: Validation of all the models constructed in step 4. The validation methods may include the use of k-Fold strategy with multiple metrics.

7. Expected Outcomes

- The proposed work will help in building a new space where health care related problems of eyes especially will become more accessible and easy to implement without the need of super-speciality medical practitioners.
- The work will contribute towards building numerically stable and consistent algorithms and frameworks that can work on different types of images and modalities.
- The machine learning models will support higher levels of generalizations and optimal accuracy in terms of sensitivity and specificity.
- 4) This work can lead to the creation of base machine learning models that can become a starting point for building solutions based on transfer learning in the medical imagery field.
- 5) Such initiatives will support all programs that help to reduce the burden of diabetes and eye problems on society.

 This research work will help in improving the speed of adoption of Artificial Intelligence in medical science.

References

- M. Mitchell and L. Kan, "Digital Technology and the Future of Health Systems," *Health Systems and Reform*, vol. 5, no. 2. Taylor and Francis Inc., pp. 113–120, 03-Apr-2019.
- [2] "Taking subspecialty pediatric eye care to the community The Narayana Nethralaya model Shetty B, Shetty R, Jayadev C, Vinekar A Indian J Ophthalmol." [Online]. Available: http://www.ijo.in/article.asp?issn=0301-4738;year=2020;volume=68;issue=2;spage=301;epage=302;aulast=Shetty. [Accessed: 24-Jan-2020].
- [3] A. Loomba et al., "Research Article," 2019.
- [4] C. Jayadev *et al.*, "Retinal immaturity at first screening and retinopathy of prematurity: Image-based validation of 1202 eyes of premature infants to predict disease progression," *Indian J. Ophthalmol.*, vol. 67, no. 6, pp. 846– 853, Jun. 2019.
- [5] N. Misra and R. Khanna, "Commentary: Rapid assessment of avoidable blindness and diabetic retinopathy in India," *Indian J. Ophthalmol.*, vol. 68, no. 2, p. 381, 2020.
- [6] R. S. Antunes *et al.*, "A survey of sensors in healthcare workflow monitoring," *ACM Comput. Surv.*, 2018.
- [7] K. Walsh, "AMA Journal of Ethics ® HISTORY OF MEDICINE Volunteer Service From American Physicians During the Vietnam War," 2019.
- [8] G. Rao, "Universal health care: Can Indian ophthalmologist community set an example?," *Indian J. Ophthalmol.*, vol. 68, no. 2, p. 281, 2020.
- [9] B. Shetty, R. Shetty, C. Jayadev, and A. Vinekar, "Taking subspecialty pediatric eye care to the community – The Narayana Nethralaya model," *Indian J. Ophthalmol.*, vol. 68, no. 2, p. 301, 2020.
- [10] A. V. Das *et al.*, "App-Based Tele Ophthalmology: A Novel Method of Rural Eye Care Delivery Connecting Tertiary Eye Care Center and Vision Centers in India," *Int. J. Telemed. Appl.*, vol. 2019, 2019.
- [11] B. Lal, U. Usgaonkar, H. Narvekar, and D. Venugopal, "Awareness and knowledge on eye donation among Allied Health Sciences, medical, and nursing students in Goa," *J. Curr. Ophthalmol.*, vol. 30, no. 3, pp. 255–262, Sep. 2018.

- [12] Sinha Kounteya, "India has largest blind population | India News Times of India," *Times of India*. p. 12, 2017.
- [13] M. M. Abdull, C. Chandler, and C. Gilbert, "Glaucoma, 'the silent thief of sight': Patients' perspectives and health seeking behaviour in Bauchi, northern Nigeria," *BMC Ophthalmol.*, 2016.
- [14] P. K. Rani, V. Nangia, K. R. Murthy, R. C. Khanna, and T. Das, "Community care for diabetic retinopathy and glaucoma in India: A panel discussion," *Indian J. Ophthalmol.*, vol. 66, no. 7, pp. 916–920, 2018.
- [15] J. Mishra and S. R. Nirmala, "Detection Of Cotton Wool Spots In Retinopathy Images: A Review," *IOSR J. VLSI Signal Process. (IOSR-JVSP*, vol. 8, no. 3.
- [16] I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda, "Machine Learning and Data Mining Methods in Diabetes Research," *Comput. Struct. Biotechnol. J.*, vol. 15, pp. 104–116, Jan. 2017.
- [17] V. V. Kamble and R. D. Kokate, "Automatic Identification and Classification of Microaneurysms, Exudates and Blood Vessel for Early Diabetic Retinopathy Recognition," in *Advances in Intelligent Systems and Computing*, 2019, vol. 711, pp. 423–434.
- [18] P. M. Samuel and T. Veeramalai, "Multilevel and Multiscale Deep Neural Network for Retinal Blood Vessel Segmentation," *Symmetry (Basel).*, 2019.
- [19] D. Toslak, J. I. Lim, X. Yao, M. N. Alam, and T. Son, "Automated classification and quantitative analysis of arterial and venous vessels in fundus images," 2018.
- [20] R. Rajalakshmi, R. Subashini, R. M. Anjana, and V. Mohan, "Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence," vol. 32, no. 6, pp. 1138–1144, Jun. 2018.
- [21] Y. Hagiwara *et al.*, "Computer-aided diagnosis of glaucoma using fundus images: A review," *Comput. Methods Programs Biomed.*, vol. 165, pp. 1–12, Oct. 2018.
- [22] S. Ohtsubo and M. Kusano, "Indocyanine Green Fluorescence Properties," in ICG Fluorescence Imaging and Navigation Surgery, Tokyo: Springer Japan, 2016, pp. 9–20.
- [23] G. Staurenghi, M. Pellegrini, A. Invernizzi, and C. Preziosa, "Diagnosis and Detection.," *Dev. Ophthalmol.*, vol. 58, pp. 39–62, 2017.
- [24] F. P. Overview, "Fundus Photography Overview," *opsweb*, vol. 22, no. 11, pp. 1–5, 2015.

- [25] E. Y. K. Ng, U. R. Acharya, A. Campilho, and J. S. Suri, *Image analysis and modeling in ophthalmology*. 2014.
- [26] J. P. A. Yaacoub *et al.*, "Securing internet of medical things systems: Limitations, issues and recommendations," *Futur. Gener. Comput. Syst.*, vol. 105, pp. 581–606, 2020.
- [27] "Enterprise image management and medical informatics ScienceDirect."
 [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128134672000870.
 [Accessed: 28-Jan-2020].
- [28] Coatsworth, "Fundus Photography Coatsworth Eye Clinic," Coatsworth
Website, 2018. [Online]. Available:
https://www.coatswortheyeclinic.co.uk/fundus-photography/.
- [29] J. Amin, M. Sharif, M. Yasmin, H. Ali, and S. L. Fernandes, "A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions," *J. Comput. Sci.*, vol. 19, pp. 153–164, 2017.
- [30] "Effective Prediction of Type II Diabetes Mellitus Using Data Mining Classifiers and SMOTE | SpringerLink." [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-0222-4_17. [Accessed: 28-Jan-2020].
- [31] P. Porwal *et al.*, "IDRiD: Diabetic Retinopathy Segmentation and Grading Challenge," *Med. Image Anal.*, vol. 59, 2020.
- [32] B. Ghaddar and J. Naoum-Sawaya, "High dimensional data classification and feature selection using support vector machines," *Eur. J. Oper. Res.*, vol. 265, no. 3, pp. 993–1004, 2018.
- [33] P. Khojasteh *et al.*, "Exudate detection in fundus images using deeply-learnable features," *Comput. Biol. Med.*, vol. 104, pp. 62–69, Jan. 2019.
- [34] S. Joshi and P. T. Karule, "A review on exudates detection methods for diabetic retinopathy," *Biomed. Pharmacother.*, vol. 97, pp. 1454–1460, 2018.
- [35] D. Marin *et al.*, "An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification," *Med. Biol. Eng. Comput.*, vol. 56, no. 8, pp. 1379–1390, Aug. 2018.
- [36] M. Sharma, P. Sharma, A. Saini, and K. Sharma, "Modular Neural Network for Detection of Diabetic Retinopathy in Retinal Images," Springer, Singapore, 2018, pp. 363–370.

- [37] H. Zhao, H. Li, S. Maurer-Stroh, Y. Guo, Q. Deng, and L. Cheng, "Supervised Segmentation of Un-Annotated Retinal Fundus Images by Synthesis," *IEEE Trans. Med. Imaging*, vol. 38, no. 1, pp. 46–56, Jan. 2019.
- [38] S. T. Fatima Bokhari, M. Sharif, M. Yasmin, and S. L. Fernandes, "Fundus Image Segmentation and Feature Extraction for the Detection of Glaucoma: A New Approach," *Curr. Med. Imaging Rev.*, vol. 14, no. 1, pp. 77–87, Dec. 2017.
- [39] B. Al-Bander, B. M. Williams, W. Al-Nuaimy, M. A. Al-Taee, H. Pratt, and Y. Zheng, "Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis," *Symmetry (Basel).*, 2018.
- [40] S. K. Saha, D. Xiao, A. Bhuiyan, T. Y. Wong, and Y. Kanagasingam, "Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: A review," *Biomed. Signal Process. Control*, vol. 47, pp. 288–302, Jan. 2019.
- [41] J. J. Gómez-Valverde *et al.*, "Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning," *Biomed. Opt. Express*, vol. 10, no. 2, p. 892, 2019.
- [42] M. M. P. N. Piyasena *et al.*, "Development and Validation of a Diabetic Retinopathy Screening Modality Using a Hand-Held Nonmydriatic Digital Retinal Camera by Physician Graders at a Tertiary-Level Medical Clinic: Protocol for a Validation Study.," *JMIR Res. Protoc.*, vol. 7, no. 12, p. e10900, Dec. 2018.
- [43] S. S. Kanse and D. M. Yadav, "Retinal Fundus Image for Glaucoma Detection: A Review and Study," J. Intell. Syst., vol. 28, no. 1, pp. 43–56, Jan. 2019.
- [44] B. C. Toy *et al.*, "Smartphone-Based Dilated Fundus Photography And Near Visual Acuity Testing As Inexpensive Screening Tools To Detect Referral Warranted Diabetic Eye Disease," *Retina*, vol. 36, no. 5, pp. 1000–1008, May 2016.
- [45] M. K. Adam *et al.*, "Quality and Diagnostic Utility of Mydriatic Smartphone Photography: The Smartphone Ophthalmoscopy Reliability Trial," *Ophthalmic Surgery, Lasers Imaging Retin.*, vol. 46, no. 6, pp. 631–637, Jun. 2015.
- [46] R. Rajalakshmi *et al.*, "Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening," *PLoS One*, vol. 10, no. 9, p. e0138285, Sep. 2015.
- [47] A. Russo, F. Morescalchi, C. Costagliola, L. Delcassi, and F. Semeraro, "A Novel Device to Exploit the Smartphone Camera for Fundus Photography.," J. Ophthalmol., vol. 2015, p. 823139, Jun. 2015.

- [48] C. J. Brady, A. C. Villanti, J. L. Pearson, T. R. Kirchner, O. P. Gupta, and C. P. Shah, "Rapid grading of fundus photographs for diabetic retinopathy using crowdsourcing.," *J. Med. Internet Res.*, vol. 16, no. 10, p. e233, Oct. 2014.
- [49] S. Pathan, P. Kumar, and R. M. Pai, "The Role of Color and Texture Features in Glaucoma Detection," in 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, 2018, pp. 526– 530.
- [50] A. Benzamin and C. Chakraborty, "Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning.", International Conference on Systems, Computation, Automation and Networking, 2018, pp. 1-5.
- [51] R. Zheng *et al.*, "Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network," *Biomed. Opt. Express*, vol. 9, no. 10, p. 4863, Oct. 2018.
- [52] M Shuja et al., "Effective Prediction of Type II Diabetes Mellitus Using Data Mining Classifiers and SMOTE", Springer, 2020.
- [53] P. Porwal et al., "IDRiD: Diabetic Retinopathy Segmentation and Grading Challenge", Medical Image Analysis, 2020.