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1. Introduction 

The Internet of Things (IoT) is a type of network connections over the Internet, this network is 

connected with the objects which communicate with each other through various sensors 

actuators, and processors communicate with each other to serve a meaningful purpose or to 

achieve the work that requires a high degree of intelligence with least human intervention [1]. 

The idea of IoT is not only to bring automation in all sectors of life or to connect all devices 

but also to make all physical objects intelligent that can connect, communicate with each other 

and can make the smart decision by themselves. 

From the IoT point of view, it is estimated that the total economic impact of IoT will be 

$2.7 trillion to $6.2 trillion per year by 2025, from this the highest impact will be on the health 

care and manufacturing. After these sectors, the next most influenced areas from IoT will be 

farming, energy processing, and security. It is calculated that in health-care applications, 

Internet of Things technology will be having an economic impact of $1.1 trillion to $2.5 trillion 

per year by 2025 [2]. The application domain of IoT is widely spread in all the areas of society 

and daily life, it serves in all the domains from environmental information,  activity information 

of living organism to the task processing in the industries. In all domains IoT has no existence 

without Wireless Sensor Network (WSN), it acts as a backbone of IoT, sensors collect the data 

and communicate them, due to Wide application areas and difference of technology among the 

devices, it makes the incorporation of IoT with WSN challenging [3].  

Based on the study it is found that due to lack of standardization some of the common issues 

that arise are management of data, communication issues related to a large number of protocols, 

real-time processing of data, data security, privacy and expansion in existing application 

termed as scalability [4]. Security is another important aspect in IoT architecture, due to 
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diversity among the devices and dynamic nature in terms of network and scalability in IoT 

applications, the existing solutions do not fully satisfy the need of security.  

Some applications are delay sensitive due to challenges in the processing of a large amount of 

data at edge or the cloud level of devices, lead to latency which is not acceptable in some 

critical applications like health scenarios, transport management etc. Some solutions demand 

or require high energy, and it’s obvious that computation intensive applications require more 

energy and drain the batteries of devices quickly and lead to expensive solutions [5].  

Standardization among architectures and protocols is also an important aspect of IoT 

architecture due to its lacking, different distributed systems or applications will not be able to 

communicate and share information among themselves, which negatively affect the 

interoperability, which is one of the key features of IoT. 

1.1. Architecture of Internet of Things 

The architecture serves as the most basic and essential block structure for IoT, and it is 

important in terms of design choices for functional and non-functional requirements in IoT 

environments to serve the increasing scale and complexity of IoT, they are intended to provide 

level of abstraction over physical devices and services and support the interoperability among 

devices. IoT environments contain a high degree of heterogeneity which is both the software 

and hardware, among the connected objects. These devices have different functionalities, 

capabilities, characteristics and Internet protocols which also raise the concern of security 

issues in IoT [3]. 

There are several key issues faced by IoT like heterogeneity among devices, device 

management and dynamic discovery, context awareness, data gathering and management, 

processing of information, scalability, the huge amount of data generation, data security and 
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integrity, scalability, privacy and dynamic adaptation. Architecture is building blocks to fulfill 

all the essential requirements and solve the key problems that IoT faces [6]. 
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Figure 1.  Basic Architecture of IoT  

1.1.1. Perception and Sensing Layer 

The lowest layer is made up of smart objects integrated with sensors. The sensors enable the 

interconnection of the physical and digital worlds allowing real-time information to be 

collected and processed [4]. 

1.1.2. Transport Layer 

This layer is used for transporting data among different devices and objects. In IoT a large 

amount of data is generated due to a large number of sensors. Therefore the IoT system requires 

a flexible and high performance network structure that can support different protocols among 

these devices. As IoT systems provide a large number of services such as high speed 

transactional services, context-aware applications etc. This layered work with a variety of 

different technologies and protocols to support communication among the heterogeneous 

environment [4]. 

1.1.3. Processing Layer 

This layer is also called a middleware layer. A large amount of data coming from the transport 

layer is analyzed and processed in this layer. This layer uses large numbers of technologies for 
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analyzing and processing work. Huge databases are used for maintaining the data and edge, 

femto, fog, and cloud computing are used for processing tasks containing big data [1]. 

1.1.4. Storage Layer 

The temporary storage layer provides storage functionalities such as data replication, 

distribution, and storage. The request definition component helps to create requests to be sent 

to the IoT sensors and storage layers. 

1.1.5. Application Layer 

This layer is the top layer in 3-Layer architecture and provides the application services of the 

IoT system to the user. Many IoT applications help patients towards their healthy and safe life, 

engaging more time to spend with their doctors. This service can be in the form of a smart 

home system, smart city, smart agriculture, or it can be a smart health system [1]. 

Edge and fog computing and its integration with cloud computing are one of the promising 

solutions to address many challenges faced by IoT applications and problems related to the 

services and the limitations of cloud computing. It supports delay-sensitive and context-aware 

services in the Internet of Things era. Instead of performing data storage and computing in a 

cluster of clouds, it emphasizes on leveraging the power of local computing and using different 

types of nearby devices/architectures as edge servers to provide timely and intelligent services. 

It can bring many advantages, including highly improved scalability by timely and intelligent 

service supply and local distributed computing that makes full use of client computing 

capabilities to meet the requirements of contextual computing. However, to truly realize edge 

computing in IoT applications, there are still many challenges that need to be addressed, such 

as how to efficiently distribute and manage data storage and computing, how to make edge and 

fog computing collaborate with cloud computing for more scalable services, as well as how to 

secure and preserve the privacy of the whole system. 
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Computation offloading is a scheme developed to minimize the energy consumption of IoT 

devices and reduce the latency, also making resource efficient edge/fog computing for 

intelligent IoT applications. There is need of smart, intelligent and selective offloading scheme 

to formulate the decision of whether to offload computation, when to offload and where to 

offload the tasks, like across local devices at edge level, to the fog cloud, or the cloud structure 

in proximity.  

1.2. Criteria used in Offloading 

A middleware, such as a smart gateway, monitors the underlying nodes and decides if 

offloading is needed or not. For making a decision some of the important criteria’s that are 

used for deciding whether or not to offload certain tasks are 

1.2.1. Excessive Computation or Resource Constraint 

 When an application requires computation more than the capability of the native device, 

certain tasks must be offloaded to a comparative resource rich device [7]. 

1.2.2. To Meet Latency Requirement 

To meet the delay sensitive requirement of certain applications, offloading can be beneficial. 

The distance can affect delay-sensitive applications. In this case, a node close to the proximity 

of the receiving node must be involved to offload the task from the distant node and provide 

the required services with minimum delays [8]. 

1.2.3. Load Balancing  

When one server has reached its capacity of executing tasks, additional tasks will need to be 

distributed among other servers within the service provider’s ecosystem [9]. Similarly, a fog 

micro, nano data center having multiple servers would distribute tasks to balance the load of 

the incoming requests. 

1.2.4. Privacy and Security 
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In traditional computing the data that cannot be processed on local devices are offloaded to the 

cloud, which raises the concern of sensitivity and secrecy of the data or tasks. Offloading at the 

edge devices, making femto cloud or at the fog cloud may help in securing the privacy and 

security of data [10]. For example, an enterprise or hospital’s data or tasks instead of moving 

from local machines to a private cloud can now be offloaded to the nearby devices and edge 

servers. Similarly, personal data from a smartphone may be moved to a personal mobile edge 

cloud. 
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2. Literature Review 

A systematic review of literature is carried out starting from the basic understanding of context, 

its role in IoT, how context awareness can help in offloading tasks decision and role of machine 

learning and deep learning that can aid in recognition of context and taking an offloading 

decision based on it.  

Cuervo et al. [2010]: A code offloading system is proposed,  making smartphones last longer 

with code offload, the system enables fine grained energy-aware offload of mobile code to the 

infrastructure. It uses the benefits of managed code to reduce the burden on programmers to 

deal with program partitioning while maximizing the energy benefits of offloading code. 

Authors present how system partitions programs, how it profiled them, and how it formulated 

and solved program partitioning as a 0-1 integer linear programming problem. It decides at 

runtime which methods should be remotely executed, driven by an optimization engine that 

achieves the best energy savings possible under the mobile device’s current connectivity 

constraints [11].  

Kosta et al. [2012]: ThinkAir, a framework that makes it simple for developers to migrate their 

smartphone applications to the cloud is proposed. ThinkAir exploits the concept of smartphone 

virtualization in the cloud and provides method-level computation offloading. It focuses on the 

elasticity and scalability of the cloud and enhances the power of mobile cloud computing by 

parallelizing method execution using multiple Virtual Machine (VM) images. ThinkAir is 

evaluated with a range of benchmarks starting from simple micro-benchmarks to more complex 

applications. It shows that the execution time and energy consumption decrease two orders of 

magnitude for an N-queens puzzle application and one order of magnitude for face detection 

and a virus scan application. [12]. 
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Lin et al. [2013]: A decision engine of mobile cloud offloading systems, which decides 

whether to offload a given method to the cloud servers, is proposed. Authors implement, and 

evaluate a Context-Aware Decision Algorithm (CADA), to optimize the performance of the 

mobile devices with various optimization criteria, including short response time and low energy 

consumption. The CADA algorithm can work with various mobile cloud offloading systems. 

The evaluation results in the importance of a context-aware decision engine presenting the high 

prediction accuracy of the CADA algorithm, the performance improvement in both response 

time and energy consumption [13].  

Yürür et al. [2014]: A study to create innovative context-aware applications for recognizing 

user related social and cognitive activities in any situation and at any location using the 

increasing computational power of smart phones is proposed. The key idea behind context-

aware applications is to encourage users to collect, analyze and share local sensory knowledge 

in the purpose of a large scale community use by creating a smart network. Many open 

challenges remain, which are mostly arisen due to the middleware services provided in mobile 

devices have limited resources in terms of power, memory and bandwidth [14]. Researchers 

have focused on implementing computationally pervasive systems to create high-level 

conceptual models to infer activities, and low-level sensory models to extract context from 

unknown activity patterns.  

Energy efficiency is a major restriction imposed on context-aware application developments 

since the extraction and inference of user relevant sensory data requires continuous sensor 

operations. A middleware for context-awareness supports the application development task by 

enhancing the level of abstraction and providing services in dealing with context. The 

middleware provides basic functionalities such as sensory data acquisition, processing and 

context recognition [15]. 
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Sukode et al. [2015]: Context has been defined by many researchers whereas the definition of 

context is given as “Context is any information that can be used to characterize the situation of 

an entity. An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and applications themselves.” Here a 

study is carried out on various approaches related to context-aware systems and self-learning 

techniques in IoT, also focused on the need for different self-learning techniques to find the 

openness of IoT environment. Context-aware applications look at the who’s, where’s, when’s 

and what’s of entities and use this information to determine why the situation is occurring. 

There are several applications as health care, pervasive games, smartphones, proximate 

selection, automatic contextual reconfiguration, contextual information and commands, 

context-triggered actions that require determination of why a situation is occurring [16, 17]. 

Othman et al. [2015]: Here, authors present a mobile cloud application development model, 

named MobiByte, to enhance mobile device applications performance, energy efficiency, and 

execution support. MobiByte is a context-aware application model that uses multiple data 

offloading techniques to support a wide range of applications. MobiByte is able to offload 

communications to the cloud and reduce communication overhead on the smartphone [18].  

Eom et al. [2015]: Machine Learning-Based Mobile Offloading Scheduler (MALMOS), a 

novel framework for mobile offloading scheduling based on online machine learning 

techniques is proposed. MALMOS provides an online training mechanism for the machine 

learning-based runtime scheduler such that it supports a flexible policy that dynamically adapts 

scheduling decisions based on the observation of previous offloading decisions and their 

correctness. To demonstrate its practical applicability, MALMOS integrated with an existing 

Java-based, offloading-capable code recapturing framework. Quantitative experiments to 

evaluate the performance and cost for three machine learning algorithms: instance-based 
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learning, perception, and naive Bayes, with respect to classifier training time, classification 

time, and scheduling accuracy is performed [19].  

Majeed et al. [2016]: To achieve computational efficiency in terms of speed, programming 

codes that require intensive computational resources can be offloaded to the cloud servers. 

However, the accuracy of the decision to offload code to cloud server can largely impact the 

performance of the overall system. Authors propose an accurate decision making system for 

adaptive and dynamic nature of mobile systems by using support vector machine learning 

technique for making offloading decision locally or remotely. The proposed system is 

evaluated with android-based prototype component for experiments considering different 

internal and external conditions. The proposed system achieves approximately 92% accuracy, 

leading to the accurate decision, thus improving performance and reducing energy 

consumption [20]. 

Ferrari et al. [2016]: The natural candidate for computational offloading is the cloud, but 

recent results point out the hidden costs of cloud in terms of latency and energy. Strategies that 

rely on local computing power have been proposed that enable fine-grained energy-aware code 

offloading from a mobile device to a nearby piece of infrastructure. Authors propose AnyRun 

Computing (ARC), a system to dynamically select the adequate piece of local computing 

infrastructure. With ARC, code can run anywhere and be offloaded not only to nearby 

dedicated devices but also to peer devices [21]. 

Sezer et al. [2017]: IoT deployments are increasing with accelerating speed, as the field grows 

in numbers and heterogeneity, one of the major problems in the path to intelligent IoT is 

understanding “context”, or making sense of the environment, situation, or status using data 

from sensors, and then acting accordingly in autonomous ways. This is called “context aware 

computing”, and it requires both sensing and, increasingly learning. Big data is a study area 
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where the corresponding methodologies for processing large data sets, which cannot be 

processed through traditional data processing techniques, are examined [22]. IoT converges to 

Big data to analyze data and make inferences from collected datasets. Machine learning 

algorithms provide better predictions and decisions with more available data collected from 

different sources. In addition to machine learning, data mining also supports better predictions 

and decisions by using appropriate learning algorithms.  

Many learning systems and solutions for IoT have been developed with context awareness 

features. They are mostly designed as rule-based, logic-based, and ontology based solutions, 

and developed using supervised, unsupervised, and reinforcement algorithms. They can be 

improved with mixed or hybrid methods, such as rule and ensemble learning algorithms for 

better performance. Neural networks can be used more extensively with the rapidly growing 

IoT big data and solutions can be enhanced with better reasoning capabilities. Deep learning 

has emerged as a revolutionary technique to provide robust solutions in classification and/or 

prediction problems where traditional machine learning models are failing [23]. 

Flores et al. [2017]: Authors design and develop an AutoScaler, an essential component for 

offloading architecture to handle the offloading workload. Also, an offloading simulator is 

developed to generate dynamic offloading workload of multiple devices. In offloading, a 

device outsources the processing of a task to a more powerful machine. To calculate the cost 

of outsourcing, authors had taken into consideration multiple parameters of the system, e.g., 

network latency, data transfer size, remote server capabilities, etc. The Autoscaler implements 

a round-robin scheduler to distribute the load among the available servers [24].  

Hossain et al. [2018]: Edge computing approach to minimize latency is used. As a major 

portion of data is generated from the user endpoint, processing this data in the edge can 

significantly improve the performance. The experiment shows that processing raw IoT data at 
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the edge devices is effective in terms of latency and provides situational awareness for the 

decision-makers of a smart city in a seamless fashion. In cloud-based processing, all the sensor 

data are processed through a remote cloud server, but it is costly in terms of processing and 

storage to send all data to the cloud. In this aspect, the emerging edge computing can help save 

a lot of bandwidth and may increase the processing speed.  

Here authors contribute by providing an edge computing framework to process situations in an 

IoT smart city that would help the decision-makers to be situation aware and provide relevant 

services to city residents. The primary purpose of the proposed framework is to detect the 

current situation that represents the state of transportation, healthcare, security and other 

aspects in a smart city. Efficient situation understanding allows the city officials to provide 

services to the citizens and perform actions accordingly. A prototype implementation of the 

framework is developed using JDK version 8 and Laravel Framework 5.6. To test the 

performance, two well known open IoT dataset (CityPulse [25] and City of Chicago [26]) is 

used. Study shows that processing raw IoT data at the edge devices is effective in terms of 

latency and provides situational awareness for the decision makers [27].  

Flores et al. [2018]: Computational offloading can improve the user experience of mobile 

applications through improved responsiveness and reduced energy footprint. A fundamental 

challenge in offloading is to distinguish situations where offloading is beneficial from those 

where it is not. Crowdsensed evidence traces as a novel mechanism for improving the 

performance of the offloading system is proposed. Evidence-Aware Mobile Computational 

Offloading (EMCO) toolkit and platform is designed as a novel solution for computational 

offloading. EMCO provides better scalability than current cloud platforms, being able to serve 

a larger number of clients without variations in performance. By outsourcing parts of 

computationally intensive tasks to dedicated computing infrastructure, devices can reduce the 
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burden on their resources while benefiting from resources provided by the dedicated 

infrastructure.  

The key novelty in EMCO is the use of crowdsensed evidence traces to characterize the 

influence of different contextual parameters and other factors on offloading decisions. EMCO 

models the context where offloading decisions are made is through simple dimensions that are 

easy to scale and determines optimal dimensions using an analytic process that characterizes 

the performance of offloading based on contexts captured by the community. Two 

crowdsensing datasets Carat [28] and NetRadar [29], to demonstrate that it is possible to use 

crowdsensing to quantify the effect of different factors on offloading performance accurately.  

EMCO uses scalable provisioning as a service approach where EMCO is deployed on multiple 

interconnected servers and responds on-demand to computational requests from any available 

server. The constructed classifier can then be deployed on the client to make offloading 

decisions directly without interfacing with the cloud. EMCO provides better scalability than 

current cloud platforms, being able to serve a larger number of clients without variations in 

performance [30]. 

Aazam et al. [2018]: For many of the applications, there is a need of another entity to execute 

tasks on behalf of the user’s device and return the results, this technique often called offloading, 

where tasks are outsourced. It can occur between IoT nodes, sensors, edge devices, or fog 

nodes. The large distance between the cloud and end-user devices, it becomes a challenge to 

support real-time processing and deliver fast response times to end-users. To address this 

challenge, some middleware is required between the end nodes and the cloud. Various 

middleware technologies such as mobile edge computing, cloudlets, have been proposed and 

discussed [31], authors present the various criteria used by recently proposed middleware 

technologies when tasks are offloaded in the fog computing environment. 
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In the offloading scenario, a node close to the proximity of the receiving node must be involved 

to offload the task from the distant node and provide the required services with minimum delays 

to meet the delay sensitive requirements of applications. Offloading of tasks needs an 

intelligent system that can make optimal decisions about whether to offload based on the 

energy tradeoff’s and which specific task to be offloaded to the cloud, or to a local fog or femto-

cloud. Further, if the task is divided into a micro task then the number of devices to which task 

allocation will be performed to balance the load [32]. 

Aazam et al. [2018]: Offloading tasks to co-located edge nodes such as fog, or a femto-cloud 

is one viable solution to address the issues such as performing compute-intensive tasks, and 

managing energy consumption. Offloading to a cloud or a fog consumes a different amount of 

energy and results in different gains in terms of computation. Three machine learning 

techniques widely used in Human Activity Recognition (HAR) tasks: k-Nearest Neighbors 

(kNN), Naive Bayes (NB), and Support Vector Classification (SVC) [33] are used. As a 

benchmark, the publicly available dataset PAMAP2 [34] is used. Communication overheads 

increase with task offloading and require additional energy consumption. Deciding the number 

of devices on which the tasks are to be offloaded is an important criterion to be considered 

before offloading, in proposed work authors has taken one to four devices where one means no 

offloading and the master device will itself do the computation. The author has used all 

possibility for allotment of tasks on devices from one to four devices and no intelligent method 

is there to decide the number of devices where tasks should be offloaded [35]. 

Nakahara et al. [2018]: Context-Sensitive Model for Offloading System (CoSMOS) a 

context-aware and self-adaptive offloading decision support model for mobile cloud computing 

systems. It employs decision-taking estimation based on the application’s time execution and 

energy consumption to decide efficiently when and which application components should be 

offloaded in order to improve the system’s execution. The main objective proposed is to 
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employ self-adaptive system architecture to reinforce the model’s self-adaptive and context-

aware capabilities on a mobile cloud computing system to improve cloud support performance. 

To evaluate the CoSMOS model this work is applied into two mobile applications: an 

implementation of the N-Queen [36] problem and the BenchImage [37], an image processing 

application, to emphasize the impact of the estimation model on the application performance. 

CoSMOS can adjust offloading services according to more adaptive conditions, even if the 

network conditions are not optimal [38]. 

Nalepa et al. [2019]: An integration of context-aware systems and affective computing 

paradigms are done to identify and characterize affective context data, and provide knowledge-

based models to identify and interpret effects based on this data.  For detection of effective 

phases use of wearable and mobile devices are made. A data acquisition layer is proposed based 

on wearable devices able to gather physiological data and integrate it with the mobile context-

aware framework. It uses physiological measurements provided by wearable devices and a 

custom context-aware framework [39]. 

Kim et al. [2019]: For the computing offloading of IoT devices, diverse job allocation 

techniques considering performance resources have been studied. An Adaptive Job Allocation 

Scheduler (AJAS) that adaptively redistributes the jobs allocated to IoT devices based on user 

behaviour patterns is proposed. The AJAS allocates jobs using the dynamic performance 

resources, which are idle resources and battery consumption rates of diverse IoT devices. Also, 

the AJAS measures the battery consumption rate of user applications executed in the IoT device 

to assess whether the allocated jobs can be processed.  

AJAS identifies IoT devices that cannot process jobs and minimizes states in which allocated 

jobs cannot be processed due to battery exhaustion and delay time due to job reallocation. The 
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AJAS minimized job reallocation delay time by requesting the allocation of jobs to other nodes 

when the user’s applications are executed while allocated jobs are being processed [40]. 

Yan et al. [2019]: Data offloading has become main area in both industry and academia, 

especially for real-time applications. Based on this, authors propose the task reliability model, 

the energy consumption model, and the device reliability model. From the perspective of 

optimising energy consumption, the authors proposed an optimal task scheduling model. An 

innovative Dynamic Energy-Efficient Data (DEED) offloading scheduling algorithm is 

proposed. The purpose of DEED is to as much as possible reducing the energy consumption 

while ensuring the task reliability. Authors proposed a heuristic algorithm that can reduce 

energy consumption while ensuring task reliability. For data offloading, two kinds of 

offloading methods: end-to-cloud data offloading and end-to-end collaborative data offloading 

are proposed. Authors propose a dynamic energy-efficient data offloading scheduling 

algorithm DEED, which can effectively deal with the problem of collaborative data offloading 

under unstable channel conditions [41]. 

Adhikari and Gianey [2019]: A cloud data centre consumes a large amount of energy while 

transmitting and computing the IoT applications, which lead to a high carbon footprint. On the 

other hand, the fog nodes provide various cloud services at the edge of the network, which can 

run the IoT applications locally with minimum energy consumption and delay. Due to the 

limited resource capacity, the fog nodes are not suitable for processing the resource-intensive 

IoT applications. To address these challenges, sustainable infrastructure in a fog cloud 

environment for processing delay-intensive and resource-intensive applications with an 

optimal task offloading strategy is built. The proposed offloading strategy uses Firefly 

Algorithm (FA) [42] for finding an optimal computing device based on two Quality-of-Service 

(QoS) parameters such as energy consumption and computational time.  



21 
 

The objective of this strategy is to minimize the computational time and the energy 

consumption of the IoT applications with minimum delay. Authors have developed new bi-

objective Energy Efficient Offloading Strategy (EES) based on firefly technique. The major 

contribution of the proposed strategy is to find an optimal computational device for each IoT 

applications. However, the existing multi-objective scheduling strategies deploy the tasks to 

suitable fog devices without considering the multiple objectives of the IoT applications or tasks 

[43]. 

Benedetto et al. [2019]: MobiCOP-IoT allows developers to deploy surrogates on both distant 

clouds and proximate nodes located on edge. As such, MobiCOP-IoT enabled applications can 

take advantage of the benefits of mobile edge computing to further enhance their capabilities. 

MobiCOPIoT offers various features like automatic offloading of arbitrary tasks according to 

the output of an integrated decision-making engine, a reliable communication model based on 

an asynchronous communication mechanism, a server component capable of automatic 

horizontal scaling, and it offers a solid security layer that leverages the robustness of google 

play services and the security features of the android operating system.  

Having rich features but still, the MobiCOPIoT required to manually set whether the platform 

should operate in cloud or edge mode. It requires specifying the IP of the server manually, 

automatic server node discovery is currently not supported also MobiCOP-IoT’s decision-

making engine currently does not take into consideration energy profiles [44]. 

Chen et al. [2019]: An adaptive framework that supports mobile applications with offloading 

capabilities in Mobile Edge Computing (MEC) is proposed. A new design pattern to enable an 

application to be dynamically offloaded among mobile devices, mobile edges, and the cloud, 

an estimation model, is designed to determine the offloading scheme automatically. In this 

model, different parts of the application may be executed on different computation nodes. 



22 
 

Finally, an adaptive offloading framework is implemented to support the design pattern and 

the estimation model. The framework first refactors the application to implement a special 

design pattern and then analyses the static code of the application to obtain information on 

movable classes. Thus, it can determine the offloading scheme during runtime according to the 

device context and enable applications to be offloaded between the device, mobile edges, and 

the cloud dynamically [45]. 

Zhao et al. [2019]: Content based offloading mechanism for Mobile Edge Computing system 

is proposed, the contents are divided into different categories according to their data 

transmission rate and users with lower data transmission rate contents are considered to have a 

lower priority, which will be offloaded first. According to the prediction value and user priority, 

and offloading algorithm based on Cross Entropy method (CE method) is proposed to improve 

the system performance. The offloading strategy based on the CE method is applied to 

maximize the system throughput while guaranteeing the data transmission requirements of each 

user [46]. 

Alam et al. [2019]: A near-end network solution of computation offloading in mobile edge/fog 

is proposed. For handling the computation resource demand from the massive mobile devices, 

a deep Q-learning based autonomic management framework is proposed. The distributed Fog 

Network Controller (FNC) scavenging the available edge/fog resources, i.e. processing, 

memory, network to enable edge/fog computation service. The randomness in the availability 

of resources and numerous options for allocating those resources for offloading computation 

fits the problem appropriate for modelling through Markov Decision Process (MDP) and 

solution through reinforcement learning. The proposed model is simulated through MATLAB. 

A code offloading framework is proposed for computation offloading in mobile fog 

environment. The offloading method deploys basic blocks, incompatible fog nodes to support 

parallelism [47]. 
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Junior et al. [2019]:  Proposes a Context-Sensitive Offloading System (CSOS) that takes 

advantage of the main machine-learning reasoning techniques and robust profiling system to 

provide offloading decisions with high levels of accuracy. Network bandwidth, received signal 

strength, input data size, and surrogate capabilities, amongst others, play a critical role in 

deciding whether or not to offload a task.  This system implements and evaluates multiple 

classification algorithms to seek the best offloading decision-making solution that achieves the 

highest accuracy.  

CSOS integrates middleware, machine learning classification algorithms, and a robust profiling 

system.  A decision engine is designed that is highly accurate for the adaptive and dynamic 

nature of mobile environments by using main classifications algorithms (k-nearest neighbours, 

rules, decision tree, and Naive Bayes) for the decision-making on whether the computation 

should be offloaded or not. CSOS adopts a history-based prediction approach where we utilize 

the past profiled information as a basis for performance inference for future tasks. CSOS 

follows the standard client–server model [48]. 
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3. Justification for Research  

In this section, the motivation behind the work and research gaps which laid the foundation for 

the problem formulation is discussed.  

3.1. Motivation 

The main idea of IoT is to bring automation in all sectors of life or to connect all the daily used 

devices and make all physical objects intelligent that can connect, communicate with each other 

and can make a smart decision by themselves. From the study, it is estimated that in the future 

highest impact of IoT will be on healthcare, manufacture, agriculture, energy processing and 

security [2, 49]. 

The application domain of IoT is widely spread in all the areas of society and daily life, it 

serves in all the domains from environmental information, activity information of living 

organism to the task processing in the industries. IoT is connected with all the domains of 

society. Therefore, a large amount of data is generated from the device sources, quantifying 

and characterizing such huge amount of information on a single device is infeasible due to 

inherent complexity and diversity among the data [30].  

When an application requires computation more than the capability of the native device, and 

to meet the latency requirement of certain delay sensitive applications like healthcare, disaster 

management etc., certain tasks must be offloaded to a comparatively resource rich device and 

devices in close proximity to provide the service with minimum delays. In addition to this, 

when the server reaches the maximum capacity of executing the tasks, additional tasks are 

required to be distributed in the form of offloading termed as load balancing  [7- 9]. 

Computation offloading is a mechanism developed to minimize the energy consumption, meet 

the latency requirement of IoT devices. To make resource efficient edge/fog computing for 

intelligent IoT applications, there is need of smart and selective offloading framework to 
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formulate the decision of whether to offload computation and where to offload the tasks, across 

local devices at edge level, fog cloud, or to the cloud structure.  

3.2. Research Gaps 

There are several challenges in IoT from heterogeneity among the devices, their data to device 

management and context awareness and processing of information [3]. Offloading of data for 

IoT applications and devices is not as straightforward as it seems to be, there are several further 

challenges that are raised with this fusion of technologies. Computing offloading is regarded 

to be very important to overcome limited computing power and storage capacity and the 

limitations of built-in batteries [40, 41]. 

1) Learning from the context of data for computational and data offloading is one of the 

major problems in the path to intelligent IoT, understanding the context, situation, or 

status and then acting accordingly in autonomous ways [48].  

2) There are mostly solutions that are designed as rule-based, logic-based, and ontology 

based using supervised, unsupervised, and reinforcement algorithms. They can be 

improved with hybrid methods, such as learning algorithms like neural methods and 

deep learning for better performance [23]. 

3) There is a need for an intelligent system that can make optimal decisions about which 

specific tasks to be offloaded to the cloud, or femto-cloud. Designing the middleware 

which can learn from the sensory data, battery behaviour and context inferences through 

machine learning and processing of the data is the challenge faced. Middleware services 

provided in the devices have limited resources in terms of power, memory and 

bandwidth [14, 15, 35].  

4) Many IoT applications like smart healthcare, Ambient Assisted Living (AAL), virtual 

reality, augmented reality, intelligent vehicular communication, Tactile Internet, 

Internet of Vehicles (IoV) etc. require separate entity to execute the tasks on behalf of 
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the user’s device and return the results. The large distance between the cloud and end-

user devices, become a challenge to support real-time processing and deliver fast 

response times to end-users [31, 32]. 

5) Offloading the IoT applications to the cloud consumes a large amount of energy during 

transmission and computing, because of far-end network and experiences a higher 

latency and network delay. On the other hand, the fog nodes provide various cloud 

services at the edge of the network, which can run the IoT applications locally with 

minimum energy consumption and delay. Due to the limited resource capacity, the fog 

nodes are not suitable for processing the resource-intensive IoT applications [43, 47]. 

6) Current studies in the field of offloading are more around data centralization and 

coordination. Edge computing and fog computing are a new area of research and in 

needs to establish framework to put these concepts into practice [44]. 

7) A fundamental challenge in offloading is to distinguish situations where offloading is 

beneficial from those where it is counterproductive. For making practical and effective 

optimal offloading decisions, a wide range of factors can influence the effectiveness of 

offloading [30].  

8) Key research questions for offloading computation in fog or edge structures are how to 

offload computation, which module or process of applications should offload, where to 

offload the module or process for minimizing the latency of service computing [47]. 
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4. Problem Statement 

Computation offloading is a mechanism developed to minimize the energy consumption of 

devices and reduce the time, a fundamental challenge in offloading is to distinguish situations 

where offloading is beneficial. Learning from the context of data or understanding the context 

or situation for computational and data offloading is one of the major problems. For making 

effective optimal offloading decisions, there is a need for design and development of a context-

aware offloading framework for computational intensive IoT applications. 

4.1. Research Objectives 

Several research gaps have been identified in the previous section. However, the focus of the 

proposed work will be limited towards the development of an offloading framework for IoT 

applications and to achieve this, the following objectives need to be fulfilled: 

1) To study the existing offloading frameworks in the Internet of Things.  

2) To implement the existing offloading frameworks.  

3) To propose a new offloading framework using context-aware learning and analyze 

its computational adaptability. 

4) To compare the proposed offloading framework with existing frameworks based on 

various parameters. 

4.2. Research Methodology 

The methodology of the proposed work is primarily divided into a literature review followed 

by the development of the proposed framework and comparing it with the existing framework. 

 To study existing frameworks and identifies the challenges in them, study solutions 

available so far and identifying the parameters to make a decision engine for 

making an offloading decision. 
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 Identification of tools and technologies towards the formation of a solution. Some 

of the potential simulators to implement required offloading framework are Weka, 

Matlab, etc. Besides this framework can be developed with java, python. 

 Design and development of a proposed framework. Setup a computational model 

for a decision engine over IoT framework that will enable an application to be 

offloaded among the devices, using contextual learning. 

 Performance evaluation of the developed framework will be done, the results 

obtained will be compared with existing solutions based on different parameters 

like energy efficiency, time. 
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4.3. Work Plan 

Table 1.  Work Plan for the Research 

Tasks (January 2018 – 
December 2018) 

(January 2019 – 
December 2019) 

(January 2020 – 
December 2020) 

( January 2021 - 
December 2021) 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
 

Course work, 
Submission of 
Synopsis. 

                

Identify and study 
the existing 
literature of IoT 
offloading 
frameworks.  

                

To study and 
identify the different 
data sets and 
parameters. 

        
 
 

        

Design & 
Development of 
offloading 
framework.  

                

Comparison of the 
proposed framework 
with existing 
frameworks in 
literature. 

                

Documentation of 
Thesis. 

                

 

 

 

 
  

  Work Completed  Work In Progress 
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5. Expected Outcomes 

Design and development of an adaptable framework that can make an offloading decision by 

understanding the context of data. The framework will provide the assumption that will decide 

that whether offloading will give benefit in the performance of IoT based applications. 

Decision taking offloading estimation framework will be designed to automatically determine 

the offloading mechanism according to the context, in which different parts of the applications 

if required are executed on the edge devices, fog, or to the cloud. 
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