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ABSTRACT 

This thesis provides an examination of chaotic and regular patterns in some 

biologically interactive models through the conceptual lens of chaos theory. Chaos 

theory is chosen as an analytical tool because it allows us to reveal the patterns and 

processes of complex systems as they move between order and disorder. 

The central question is that of how complexity, which is based in chaos theory, can 

highlight the ways to address macro and micro level problems in complex 

biological systems. 

Four biological systems are discussed in terms of complexity. The first system 

under study was a three-tropic food chain model that has been investigated by 

discretizing the classical mathematical model for three-trophic food chains 

modified and used by Bo Deng (2006). Famous Euler’s method has been employed 

to discretize the differential equations used in the work of Bo Deng. Various 

measurable quantities for emergence of chaos, like Lyapunov exponents, 

topological entropies, correlation dimensions, have been numerically calculated 

and represented through plots. Finally, the chaos indicator, named Dynamic 

Lyapunov Indicator (DLI), has been used to identify clearly chaotic and regular 

motion. Bifurcation diagrams and various plots for LCEs, topological entropies, 

correlation dimension etc. are interesting and provide help to properly analyze the 

evolutionary behavior.   

Another problem on dynamics of two-gene Andrecut-Kauffman system has been 

studied for chaos and complexity. The model consists of nonlinear equations, in 

context with biochemical phenomena obtained from chemical reactions appearing 

in a two-gene model (Andrecut and Kaufmann, 2007). The chemical reactions are 

assumed to correspond to gene expression and regulation. For this problem, studies 

have been performed carefully to understand chaotic phenomena during its 

evolution together with complexities present in the system.  

 



 xvi 

The third problem is based upon complexities in a Plant-Herbivore system. The 

studied work is based on the non-dimensional mathematical model proposed in a 

recent article (Abbott and Dwyer, 2007). Mathematical analysis and simulations of 

this model provide us with biological insights that may be used to devise control 

strategies to regulate the population of the herbivore. Since the herbivore 

movements are random, it is more appropriate to study a stochastic model instead 

of deterministic one. Such realistic plant-herbivore system, would be our future aim 

of investigation.  

Lastly, we have worked with a single-species model with stage structure for the 

dynamics in a wild animal population for which births occur in a single pulse once 

per time period. The measures, like Lyapunov exponents, topological entropies and 

correlation dimensions, are obtained for this problem for discussion of evolutionary 

phenomena. In the processes of study, we have discussed the stability criteria of the 

steady state solution. 

It is concluded that complexity, based on chaos theory, is a powerful framework for 

understanding the interactions in biological systems. Chaos theory provides us with 

many tools which can indicate regular and turbulent patterns which could be of 

great use if we wish to make some changes in the existing systems. This can answer 

various questions regarding existence and extinction of various species or the 

impact of their social interactions on the environment. 
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Chapter 1   

Introduction 
 

The things that really change the world, according to Chaos theory, are 

the tiny things. A butterfly flaps it’s wings in the Amazonian jungle, 

subsequently a storm ravages half of the Europe. 

Neil Gaiman 

 
1.1 Brief account of research problem 
 
Chaos theory comes within the domain of nonlinear systems. Chaos in a system 

signifies a state of the system that shows unpredictability. Prediction is almost 

impossible at this state since the system becomes very sensitive to the initial 

condition once it is chaotic.  Almost all natural and biological systems are nonlinear 

in nature and many of them are full of complexity and disorder. Nonlinear systems 

do not obey the principle of superposition, and so there cannot be a simple rule that 

can describe all nonlinear systems. However, the nature is a mixed manifestation 

of order and disorder and its beauty lies in such manifestation. For a certain set of 

values of parameters, a system shows regular behaviour; the same system may 

suddenly show chaos for another set of values of parameters. Evolutionary 

behaviours and properties of two nonlinear systems could be completely different. 

Since these systems are part of our life, we need to explore them and investigate 

their properties by proposing specific rules. These days, we have high speed 

computers and software of various levels and purpose. With the knowledge of our 

mathematics and basic sciences, if we can write appropriate mathematical models 

for any natural system then with the aid of computers we can explore various 

properties of the system that emerge during evolution. The system proposed may 

incorporate some parameters and, at a certain stage, set of parameter values may 

lead the system into chaos. In some sense, chaos is the property of “Nonlinearity” 

of the system which may happen very often in any such system. Thus, we observe: 
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chaos in weather like cyclone, hurricane, tsunami, tornado etc; chaos in society like 

spread of epidemic, communal riots, population explosion etc; chaos in markets 

like unpredictable fluctuation of economy; chaos in medical sciences like erratic 

blood flows, complex structure of our brain, heart attack etc. Chaos theory is 

applied in many scientific disciplines, including geology, mathematics, 

microbiology, biology, computer science, economics, engineering, finance, 

meteorology, philosophy, physics, politics, population dynamics, psychology, and 

robotics. Chaotic behaviour has been observed in the laboratory in a variety of 

systems, including electrical circuits, lasers, oscillating chemical reactions, fluid 

dynamics, and mechanical and magneto-mechanical devices, as well as computer 

models of chaotic processes. Observations of chaotic behaviour in nature include 

changes in weather, the dynamics of satellites in the solar system, the time evolution 

of the magnetic field of celestial bodies, population growth in ecology, the 

dynamics of the action potentials in neurons, and molecular vibrations.  

 

To study nonlinear systems systematically, we need to use principles of nonlinear 

dynamics and various tools which are developed during the processes of 

investigations of different systems. A number of methods and tools are already 

available through results of a number of recent researches. To identify regular and 

chaotic motion in nonlinear systems presently we have tools like time series graphs, 

phase plots, bifurcation diagrams, Poincare maps and Poincare surface of section, 

Power spectrum analysis, bifurcation analysis, Lyapunov exponents and more 

recently, fast Lyapunov Indicators (FLI), Smaller Alignment Indices (SALI), and 

Dynamic Lyapunov Indicator (DLI). For certain systems we may also use some 

advanced concepts like topological entropy and correlation dimensions. Lyapunov 

exponents, topological entropy and correlation dimensions are considered as 

measure of chaos as well as complexities in nonlinear complex dynamical systems. 

 

1.2 Importance of the area of research 
 

In the proposed thesis, we have investigated the evolutionary behaviour in some 

biological and natural systems. Our models are both discrete and continuous. 

Existence of non-linear models is close to the natural phenomena happening around 
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us. Such systems are full of complexity and may evolve chaotically. By studying 

the dynamics of such models, one can understand the evolutionary behaviour of 

that particular system e.g. studying an economic model on market, fluctuation and 

chaotic changes occurring there can be explained mathematically. Similarly 

studying a population model can throw light on the stability of population as well 

as survival under various conditions e.g. an epidemic and provides us some 

indications about preventive measures. With migration of population to bigger 

cities and other socio-economic changes, there are many changes in the weather 

and environment. We know that the weather is not the same everywhere nor it is 

same every day. Weather change is nothing but the phenomena of evolution of 

weather and it comes under the domain of nonlinear dynamics. A chaotic weather 

e.g. Tsunami, Tornado, Hurricane etc are due to change of certain parameters in the 

weather. Lorenz 1963, had proved that a small flip of butterfly can result into some 

devastating events such as hurricane, cyclone etc., at some larger distance.  

Our environment is really vast and highly complex. The diversity of biological 

species and the complexity of every individual organism has a great role in this 

complexity. Ecosystems throughout the world are going through dramatic changes 

in their environment. This has resulted in the extinction of some species over all 

disturbing the system. 

The individuals interact by predation, competition or cooperation on a smaller scale 

but on a larger scale, the microscopic interactions lead to interactions between 

populations. Food webs, which are networks of predator-prey interactions, provide 

a basic understanding of ecosystems and studying these in detail can help to find 

strategies to preserve the extinct species. 

In population dynamics, one can easily observe invasions, population bursts and 

extinctions. These dynamics are the driving forces behind biological evolution. The 

emergence and extinction of species happens in a complicated manner and provides 

a basis for some exciting studies. 

Human population is growing and so are the human impacts on the environment 

such as habitat destruction and fragmentation, climate change, species invasions, 

pollution, and overfishing. Due to this, many of the earth’s ecosystems are 

experiencing large species losses. These losses raise many questions. For example, 
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the extent to which the loss of biodiversity matters or what will happen to the 

productivity and balance of the ecosystems? These questions are very tough to 

answer due to the fact that ecological communities are very complex in themselves 

because of a lot of inter species interactions and interactions with the environment.  

Since biological succession always takes place, it is not possible to conserve every 

single species. Still, major changes that involve the destruction of whole 

ecosystems have to be taken care of. We cannot stop all human activities that impact 

environment but we can try to find efficient strategies for the conservation of the 

ecosystems. In order to do that, a deep and clear understanding of ecosystem 

functioning is required. 

 

1.3 Literature review 
 
An important area of research is the study of spread of epidemic in our social 

systems. In this regard, the Kermac-McKendric SIR model was proposed by 

Kermac and McKendric  (Kermack and McKendrick, 1927). The SIR model is one 

of the simplest compartmental models where S denotes the number of susceptibles, 

I denotes the number of infections and R denotes the number of recoveries. The 

Kermack-McKendrick model is an SIR model for the number of people infected 

with a contagious illness in a closed population over time. It was proposed to 

explain the rapid rise and fall in the number of infected patients observed in 

epidemics such as the plague (London 1665-1666, Bombay 1906) and cholera 

(London 1865). More complicated versions of the Kermack-McKendrick model 

that better reflect the actual biology of a given disease are often used.  

Stephen Smale (Smale, 1967) made remarkable contributions to the area of 

nonlinear dynamics. His first contribution was the Smale horseshoe that led to 

significant research in dynamical systems. To investigate biological models some 

works were reviewed among which the article of May (May et al., 1981) is very 

important which provides simple mathematical models for very complex dynamics. 

The American physicist Mitchell Jay Feigenbaum (Feigenbaum, 1978) laid the 

foundations for studying the world of complicated events in nature by recognizing 

patterns underlying the application of mathematical equations. Chirikov (Chirikov, 

1979) worked on the universal instability of many-dimensional oscillator system. 
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Grassberger and Procaccia (Grassberger and Procaccia, 1983a, Grassberger and 

Procaccia, 1983b) worked on measuring the strangeness of Strange Attractors. The 

book by Moon (Moon, 1987) discusses advanced research developments in chaotic 

dynamical systems accessible to undergraduate and graduate mathematics students 

as well as researchers in other disciplines. The Tribolium Model (a model 

describing the population growth in the flour beetle Tribolium) proposed by 

Costantino et al (Costantino et al., 1997) is an interesting problem to study by 

imposing some modification. The book by Bailey (Bailey, 1975) also provides 

some basic foundations in this field. 

The book by Haefner (Haefner, 1996) led to some direction while proposing the 

model. The model proposed provides strong empirical evidence for deterministic 

mechanism complexity and aperiodicity in different species of population. Then, 

one can proceed for further study of following recent works by Steriloff et al 

(Strelioff and Hubler, 2006) and others. 

The dynamics of biological systems under different ecological conditions have been 

investigated from time to time by different researchers i.e. (Holling, 1965), 

(Freedman and So, 1985, (Hastings, 1991 #42, Klebanoff and Hastings, 1994), 

(Deng, 2001), (Aziz-Alaoui et al., 2001), (Brin and Stuck, 2002) and many others. 

Some of these models are used as a basis for the work presented in this thesis. The 

recent work by Ivanchikov and Nedorezov in 2011, has suggested that the 

discretized form of models provides a more interesting and detailed findings. We 

have also used discrete form of models to carry out our research. 

 

1.4 Basic concepts and definitions 

In this section, we have briefly defined basic concepts used in the research work.. 

The purpose of this section is to provide a conceptual framework. Important points 

like the question of stability and complexity are discussed elaborately below. 
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1.4.1 Dynamical systems 
 
Mathematically, a dynamical system can be defined as a set of prescriptions that  

determine the time evolution of a set of state variables. It refers to  a system in 

which a function describes the time dependence of a point in a geometrical space. 

The study of dynamical systems is the focus of dynamical systems theory, which 

has applications to a wide variety of fields such as mathematics, physics, biology, 

chemistry, engineering economics and medicine. Dynamical systems are a 

fundamental part of chaos theory, logistic map dynamics, bifurcation theory, 

the self-assembly process, and the edge of chaos concept. The concept of a 

dynamical system has its origins in Newtonian mechanics.  

A proper definition of dynamical system can be written as follows: 

Definition: A dynamical system is a system which evolves with time from a 

prescribed initial condition (s) with a well defined rule (s).  

Thus, there are two main ingredients of dynamical systems: 

(1) The prescribed initial condition(s), say x0  which indicates from where the 

system started evolving . 

(2) The fixed rule(s), say f, which indicates how the system is evolving. 

The rule (s), f,  must be written in the form of mathematical equation (s) e.g. discrete 

forms of equations, differential equations, integral equations, algebraic equations 

etc.  

In our study, we are mainly concerned with the following types of dynamical 

systems: 

a) Discrete Dynamical Systems where time is an integer variable 

b) Continuous Dynamical Systems where time is a continuous variable. 

 

1.4.2 Discrete dynamical systems 

General forms of discrete dynamical systems are as follows: 

  

where 𝑓:𝑀 → 𝑀, is a map of a state space into itself and Xn denotes the state at the 

discrete time 𝑛. The sequence 𝑓{𝑋5} obtained by iterating the above equation 

)X(fX n1n =+
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starting from an initial condition 𝑋7 is called the orbit of 𝑋7 , with 𝑛	 ∈ 	𝑁 or 𝑛	 ∈

	𝑍, depending on whether or not map 𝑓 is invertible. 

Discrete one dimensional systems be represented by equations of the type 

xn + 1  = f (xn ).  

 

All functions of one variable representing a system are covered under one 

dimensional discrete dynamical systems. 

Examples:   

(1) f(x) = a x2 + b x + c is represented as x n + 1 = a xn2 + b xn + c. 

(2) Logistics map f(x) = l x (1 – x ) is represented as x n + 1 = l xn (1 – xn ) . 

(3) Epidemic Model f(x) = a x2 – 1 is represented as x n + 1 = k xn2 – 1. 

 

Discrete two dimensional systems be represented by pair of equations of the type: 

xn +1 = f (xn , yn) 

yn + 1 = g (xn , yn )  

All pair of functions of two variables representing a system are covered under two 

dimensional discrete dynamical systems. 

 

Examples:  

Hénon map: f(x, y) = 1 – ax2 + y, g(x,y) = bx is represented as 

 
A two-species population model is described by the discrete system 

 
Discrete three dimensional systems are represented by three equations of the type: 

xn +1 = f (xn , yn, zn) 

yn + 1 = g (xn , yn, zn ) 

zn + 1 = g (xn , yn, zn ) 
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All sets of three coupled equations involving three functions of three variables x, y, 

z  and representing a dynamical system are represented by three discrete forms of 

equations. 

Example: A discrete 3-dimensional food-chain model proposed by Elsadany, 

(2012), to study the ecosystems of three interacting species, each with non-

overlapping generations can  be given as  

f(x, y, z) = a x (1 – x) – b x y,  

g(x, y, z) = c x y – d y z,  

h(x, y, z) = r y z  

A discrete form of above model be given by  

xn + 1 = a xn (1-xn)-b xnyn 

yn + 1 = c xn yn -d yn zn 

zn +1 = r ynzn        

 

1.4.3 Continuous dynamical system 

A continuous dynamical system is represented by  

  

where X ∈ R>. So, starting from initial condition x7 we can solve the equations to 

obtain the future state x(t) of the given system and the path is called phase space as 

it evolves with time. 

Continuous dynamical systems are represented by differential equations. 

Examples: 

One dimensional logistic equation  = l x (1 – x). 

2-Dimensional Predator-Prey system. 

 = ax – bxy 

Xxt),(x,f
td
xd

0 Î=

td
xd
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 = dxy – cy 

Duffing Equation   

The Lorenz system is a 3- dimensional continuous system which was introduced as 

a model for atmospheric convection by (Lorenz, 1963). It is governed by the 

following system of equations:  

𝐝𝐱
𝐝𝐭 = 𝐫(𝐲 − 𝐱) 

𝐝𝐲
𝐝𝐭 = 𝐱(𝐚 − 𝐳) 

𝐝𝐳
𝐝𝐭 = 𝐱𝐲 − 𝐛𝐳 

where r is called the Prandtl number and a is called the Rayleigh number and b is 

the geometric factor. 

1.4.4 Linear and nonlinear dynamical systems 

Linear dynamical systems are dynamical systems whose evaluation functions 

are linear. Linear systems can also be used to understand the qualitative behaviour 

of general dynamical systems, by calculating the equilibrium points of the system 

and approximating it as a linear system around each such point. 

A linear system obeys the Principle of superposition which can be described as 

follows: 

Let	𝐋 be any differential operator, u, v are two vectors from a vector space V and 

a, b are two scalars then if  

L (a u + b v) = a L (u) + b L (v), 

we say 𝐋 is a linear differential operator.  

td
yd

tωcosλyµyβ
td
ydα

td
yd 3
2

2

=+++
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The principle of superposition holds in linear systems while in a nonlinear 

system the change of the output is not proportional to the change of the input. These 

systems respond disproportionately (nonlinearly) to initial conditions or perturbing 

stimuli.  

The differences between a linear and a non-linear system is that a linear system 

always responds by vibrating at the same frequency as the input. A non-linear 

system does not usually or necessarily respond at the same frequency as the input. 

We can understand this better by looking at the motion of a damped, forced non-

linear pendulum equation.  

𝐝𝟐𝛉
𝐝𝐭𝟐 + 𝛄

𝐝𝛉
𝐝𝐭 +	𝛚𝟎

𝟐 𝐬𝐢𝐧 𝛉 = 𝐟 𝐜𝐨𝐬𝛚𝐭 

And the linear form is  

𝐝𝟐𝛉
𝐝𝐭𝟐 + 𝛄

𝐝𝛉
𝐝𝐭 +	𝛚𝟎

𝟐𝛉 = 𝐟 𝐜𝐨𝐬𝛚𝐭 

 

 
Fig.1.1: Non-linear (Red) and linear (Green) oscillations in equation of the pendulum.  
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1.4.5 Deterministic and Stochastic Systems 

(a) Deterministic Systems: 

In mathematics and physics, a deterministic system is a system in which no 

randomness is involved in the development of future states of the system. A 

deterministic model will thus always produce the same output from a given starting 

condition or initial state.  

If the rule, the mathematical equations and the initial conditions are well explained 

and no randomness is involved i.e. the output will be same for same input, then such 

a system is called deterministic.  It is very important to note that in a deterministic 

system one gets the same output for any repeated same output.  

(b) Stochastic (or Random) Systems: 

In a Stochastic or a Random system, one gets different outputs for any repeated 

same input. An example of stochastic system is the random noise. 

1.4.6 Fixed Points 
 
Fixed point theory has been used to deal with stability problems for several years. 

Since here we are dealing with non-linear systems so the fixed points could be of 

any type such as stable & unstable node, saddle point, stable & unstable focus etc. 

If the dimension is greater than two, fixed points have to be categorised carefully. 

The Jacobian matrix for the system plays a significant role while finding fixed 

points and their stability. 

To determine the nature of fixed points, it is important to learn about the controlling 

parameters in a system.  A stable fixed point has a stable orbit initiated by it while 

an orbit initiated nearby an unstable fixed point is unstable. Clarity of fixed points 

leads to a clear understanding of evolutionary behaviour of a system. 

Definition: Fixed points are the steady state real solutions of a dynamical 

system. Fixed points are also known as equilibrium points, critical points, 

liberation points, Lagrangian points.  
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A fixed point can be categorised as stable, unstable and semi-stable. A fixed point 

is said to be either stable or unstable depending on the behaviour of the trajectories 

in its neighbourhood. If all these trajectories remain near the fixed point, then the 

point is considered to be stable, and if any of these trajectories do not remain in a 

neighbourhood of the fixed point, the fixed point is considered unstable. 

 

(a) Fixed points for discrete systems 

One dimensional discrete system:  xn + 1= f (xn ) 

To find fixed point put  
 
xn + 1 = xn = x = f(x)  
 
Then solve the resulting equation for x. Only real solutions of the equation will be 

the termed as fixed points of the given system. 

Example: Consider the map 
xn + 1 = a – xn

2 or f(x) = a – x2    

For fixed point, we have  x = a – x2 , which implies   This 

system has fixed points provided  a >  

and if a = , then the system has only one fixed point  x*  =    

 
Example: Consider the map 
xn + 1 = xn – xn2 – 4 `     
For fixed point, we have x = x – x2 – 4, which implies x2 + 4 = 0  x = ± 2 i 

 the system has no fixed point. 
 
Example: Consider the case of Logistic map  
xn + 1 = l xn (1 – xn)      
For fixed point of this system write x = lx(1 – x). Solving this, we obtain 

solutions 0, and . Thus, there are two fixed points of Logistic map system; 

x1* = 0 and x2* = . 

Two dimensional discrete systems: xn + 1 = f (xn ,yn ),yn + 1  = g (xn ,yn ) 
 
To find fixed point put  
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xn + 1 = x = f(x, y) and  yn + 1  = y = g (x, y) 
Then, solve these resulting equations for pair of solutions (x, y). Only real 

solutions of these equations will be the termed as fixed points of the given system. 

 
Example:  Consider the Hénon map 
 
xn+1 = 1 + yn – a xn2 

     yn + 1 = b xn  

Proceeding with arguments similar to one dimensional case, for fixed points of 

this map, we substitute: 

x = 1 +y – a x2  &   y = a x. 

Then, after solving these, we obtain solutions (1, a) and (- , - 1). Thus, we have 

two fixed points p1* = (1, a) and p2* = (- , - 1). 

 
Three dimensional discrete systems: For three dimensional systems,  
xn + 1 = f (xn, yn, zn),  

yn + 1 =g(xn, yn, zn ),  

zn + 1 = h(xn, yn, zn) 

we proceed similarly for fixed points and put 

x = xn + 1 = f (x, y, z),  

y = yn + 1 = g (x, y, z),  

z = zn + 1= h (x, y, z) 

 
Example: Consider the equations of a Food-Chain represented by: 
 
xn + 1 = a xn (1-xn)-b xn yn 

 
yn + 1 =c xn yn -d yn zn 

 
zn + 1 = r yn zn                                                                              
 
Writing xn + 1 = x =ax(1 – x) – b x y, yn + 1  = y = c x y – d y z & zn + 1  = z = r y z 

and solving these, we get fixed points for the Food-Chain system shown above.  

 
(b) Fixed points for continuous system  
 
To find fixed points for continuous systems, put time derivatives equal to zero. 

a
1

a
1
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One dimensional systems:  put  and then solve the 

resulting equation for x. 

Example: ; put . Then fixed points are P1* = 0 and P2* 

= M. 
 

Example: ; put . Then fixed points are x1* = 0 and x2* = 1 

and x3* = - 1. 

Two dimensional systems: , , put , 

 and then solve the resulting two equations for (x, y). 

 

Example:   ( Predator-Prey Model) 

Put , , then the solutions of above Predator-Prey system be given 

by (0, 0) and . Therefore, fixed points of this system are  

P1* = (0, 0) and P2* = . 

Three dimensional systems: , , 

One needs to put , ,.  and then solve the resulting three 

equations for (x, y, z). 
 
 
Example: The Lorenz system 
 

The Lorenz system is a system of ordinary differential equations (the Lorenz 

equations) first studied by Edward Lorenz. It is notable for having chaotic solutions 

for certain parameter values and initial conditions. In particular, the Lorenz attractor 

is a set of chaotic solutions of the Lorenz system which, when plotted, resembles a 

butterfly as shown in figure 1.2. 
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 , ,   

This system evolves chaotically for s = 10, r = 28, b = 8/3 and results in a chaotic 

attractor called Lorenz Attractor which has the shape of a butterfly. Due to this, it 

is known as a chaotic phenomenon, also termed as the “Butterfly Effect”.  

Equilibrium points (fixed points): 

Equilibrium points (fixed Points) of Lorenz equations are real solutions of the 

system of equations when time derivatives are put equal to zero. Then, one gets 

the equilibrium points denoted as x0 = (0, 0, 0), and with r > 1, the other two fixed 

points  

xc1 = (  ,  , r – 1),  

xc2  = (- , - , r – 1) 

 

 
Fig.1.2. Lorenz attractor for s = 10, r = 28, b = 8/3. 
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1.4.7 Stability & Asymptotic stability of Fixed Points 
 

A fixed-point x* is said to be stable if the orbit initiating nearby x*has the 

tendency to converge to x*.  

Mathematically, a fixed-point x* is stable if for every e > 0 there exists a d > 0 

such that  

|| x0 – x*|| £ d implies that || xn – x*|| £ e for all n ³ 1. 

In other words, once we have chosen how close we want to remain to x* in the 

future (for a choice of e), we can find how close we must start at the beginning 

(existence of d).  

The symbol, || . || stands for “Euclidean norm” and that 

|| x || = ||(x1, x2, x3, . ., xq . .) || = (x12 + x22 + . . . + x q2. . ) ½ 

 
(a) Condition of stability for Discrete One-Dimensional Systems: 

Let x* be a fixed point of system xn+1 = f(xn) and x0 be any initial point nearby 
x*such that  

x0 = x* + D, where D is very small. Then, expanding  

f(x0) = f(x* + D), about x*, we get 

f(x0) = f(x* + D) = f(x*) + D (df/dx)|x*+… 

Put x1= f(x0) and omitting higher order small terms, as x* = f(x*), we get 

(x1 – x*) = D (df/dx)|x*= (x0 – x*) (df/dx)|x* 

ÞThe distance to the fixed point decreased by the map if   

|(x1 – x*)| < |(x0 – x*)| 

i.e. If |(x1 – x*)/(x0 – x*)| = |(df/dx)|x* < 1 

or | f¢(x)|x* < 1, x* is stable. Also, if | f¢(x)|x* > 1, x* is unstable. 

 

Example: Consider the case of Logistic map  

xn + 1  = l xn ( 1 – xn)      
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For fixed point of this system write f(x) = l x(1 – x). Solving this, we obtain 

solutions 0, and . Thus, there are two fixed points of Logistic map system; 

x1* = 0 and x2* = . 

 

Since f¢(x) = l - 2l x = l ( 1 – 2 x). Therefore, 

at x1* = 0,  | f¢(x) | = | l |. So if  | l | < 1,  x1* is stable 

 As l > 0, so if 0 < l < 1 , x1* is stable   

At x2* = , | f¢(x) | = | l( 1 – 2 (  ) | = | 2 - l| = |l - 2 |. 

Therefore, if   |l - 2 | < 1 then x2* is stable.    

 1 < l < 3 , then x2* is stable. 

Example: Consider the map 

xn +1= a – xn2 or f(x) = a – x2   (1) 

For fixed point, we have x = a – x2, which implies   The 

system (1) has fixed points  

From (1) we have, f¢(x) = - 2 x. 

At  , we have | f¢(x) | = | - 1 + | = |  - 1 | 

So, if |  - 1 | < 1,    0 <  < 2  0 < 1 + 4 a < 4 

- 1 < 4 a < 3  < a < , then  is stable 

At , we have | f¢(x) | = | - 1- | = = |  + 1 |. 

So, if | + 1 | < 1,   - 2 <  < 0  2 > -  

4 < 1 +4 a  a >  , then is stable. 
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(b) Condition of stability for Continuous One-Dimensional Systems: 

For one dimensional continuous system �̇� = 𝑓(𝑥), The fixed point  �̅� is stable if 

f `(�̅�) < 0 and is unstable if  f `(�̅�) > 0. 

 

For two-dimensional system given as 

f `(x) = 	f(xd, xf) 

g`(x) = 	g(xd, xf) 

where right hand side functions are smooth curves. 

The Jacobian matrix is defined as: 

J =

⎣
⎢
⎢
⎡
𝜕f
𝜕xd

𝜕f
𝜕xf

𝜕g
𝜕xd

𝜕g
𝜕xf⎦

⎥
⎥
⎤
 

 

Generally, we have to find the eigenvalues of this 2 x 2 matrix. If the largest real 

part of all the eigenvalues is positive then the fixed point is unstable and if the 

largest real part of all the eigenvalues is negative then the fixed point  (�̅�, 𝑦q)	is stable. 

If finding eigen values is a tedious task, then we can find stability of fixed points 

by using trace 𝑇 and determinant 𝐷 rule for the Jacobian matrix. 

If the Jacobian matrix evaluated at the fixed point of interest is:   

 

𝐽(�̅�, 𝑦q) = v𝑎 𝑏
𝑐 𝑑

{, then 𝑇 = 𝑎 + 𝑏		and 𝐷 = (𝑎. 𝑑 − 𝑏. 𝑐)	 

the fixed point can be one of six types:  

If 𝐷 < 0, the fixed point is a saddle point. 

If 𝐷 > 0 and If 𝑇 > 0, the fixed point is unstable. 

If 𝐷 > 0 and If 𝑇 < 0,		fixed point is a stable. 

If 𝐷 > 0 and If 𝑇 = 0,			fixed point is called center. 

If 𝐷 > 0 and 𝑇f − 4𝐷 > 0  then the fixed point is a node. 

If 𝐷 > 0 and 𝑇f − 4𝐷 < 0  then the fixed point is a focus. 

 



 19 

 
Fig. 1.3 Examples of equilibrium points. 

 

For 3-dimensional system: 
The Jacobian matrix of a three-dimensional system has 3 eigenvalues, one of which 

must be real and the other two can be either both real or complex-conjugate. From 

he signs and the types of the eigenvalues, let us decide the type of fixed points. The 

fixed point can be classified as: 

Node when all eigenvalues are real and have the same sign; The node is stable 

(unstable) when the eigenvalues are negative (positive). 

Saddle when all eigenvalues are real and at least one of them is positive and at least 

one is negative; Saddles are always unstable. 

Focus-Node when it has one real eigenvalue and a pair of complex-conjugate 

eigenvalues, and all eigenvalues have real parts of the same sign; The equilibrium 

is stable (unstable) when the sign is negative (positive). 

Saddle-Focus when it has one real eigenvalue with the sign opposite to the sign of 

the real part of a pair of complex-conjugate eigenvalues; This type of equilibrium 

is always unstable. 
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Fig. 1.4 Different types of fixed points. 

 

  

Fig. 1.5 Saddle point. 
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Stability of Orbit: 
 

Let x* be a fixed point of system f(x) and x0 is an arbitrary point in the 

neighbourhood of x*. Then, if the orbit {x0, f1(x0), f2(x0), f3(x0), . . .},  

satisfies                 | fn (y) – x* | = 0       

then x* is said to be stable and the above orbit is known to be a stable orbit. 

This also implies that two orbits of “f” with initial points x and y, both in the 

neighbourhood of x*, approach asymptotically. 

If all solutions of the dynamical system that start out near a fixed point x* stay 

near x* forever, then x* is Lyapunov stable.  

More strongly, if x* is Lyapunov stable and all solutions that start out 

near x* converge to x*, then x* is asymptotically stable.  

 

1.4.8 Limit cycle  
 
In analysis of non-linear systems, singular points are not the only interesting points 

that one may like to learn about. Many non-linear systems although unstable exhibit 

limit cycling. Even though trajectories stay bounded, they experience sustained and 

bounded oscillations. A limit cycle is a periodic orbit of a continuous dynamical 

system that is isolated for example the swings of a clock. Determining limit cycle 

is as important as finding fixed points in non-linear dynamics. 
 

 

Fig.1.6 Stable limit cycle for Wander Pal Oscillator. 
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1.4.9 Attractors and Strange Attractor 
Attractor: A Stable fixed point, a stable periodic orbit, a stable torus etc. are 

attractors of a dynamical system because these attract all nearby trajectories. 

Strange Attractor: Strange attractor is a set and is also an attractor but with 

following special properties: 

• An orbit originating within the set remains within it. 

• Set is dense. 

• Set has fractal self-similar property i.e. any small portion of the set, when 

magnified, provides same picture.  

An attractor is called strange, if it’s dimension isn’t a natural number. Most (may 

be not all) strange attractors describe a chaotic movement. It has sensitive 

dependence on its initial conditions. If we plot the system's behaviour in a graph 

over an extended period we may discover patterns that are not obvious in the short 

term. In addition, even if we start with different initial conditions for the system, 

we will usually find the same pattern emerging. Strange attractors are unique since 

one does not know exactly where on the attractor the system will be. This term was 

coined by David Ruelle and Floris Takens (1971) A strange attractor has a fractal 

structure which means repeating itself while representing a complex pattern of 

behaviour in a chaotic system. These attractors are dense sets having fractal 

(fraction, non-integer) dimensions and satisfy dense property i.e. a self-similarity 

property.  
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Fig. 1.7 Some Strange Attractors including Lorenz and duffing attractor. 

 

1.4.10  Orbits and Periodic Orbits 

Orbit: An orbit of a system xn + 1  = f (xn ) under rule f starting from point x0 is 

the sequence of iterations  x0, x1, x2, x3, x4, . . . . . , xk, xk+1, . .   

Periodic Orbit:  

An orbit O(x0) is said to be periodic of period p ≥ 1 if xp = x0. The smallest integer 

p such that xp = x0 holds is called the minimum period of the orbit. 
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A periodic orbit of period p is said to be stable if each point xi , i= 0, 1, 2, . . ,    p-1  

is a stable stationary state of the dynamical system. 

1.4.11  Food Web and Food chain 

A food chain is a linear sequence of organisms through which nutrients and energy 

pass as one organism eats another. In a food chain, each organism occupies a 

different trophic level, defined by how many energy transfers separate it from the 

basic input of the chain. Food webs consist of many interconnected food chains and 

are more realistic representations of consumption relationships in ecosystems. 

Energy transfer between trophic levels is inefficient—with a typical efficiency 

around 10%.  

This inefficiency limits the length of food chains. 

1.4.12  Time Series 
 

A time series is a series of points that are graphed in time order. Usually a time 

series is sequence taken at successive equally spaced points in time. Thus, it is a 

sequence of discrete-time data. A time series is a chart that plots the changing 

values of the variable(s) on the y-axis and time on the x-axis. Time series charts do 

play an important part in complexity science (J.C. Sprout 2003). 

Epidemic Model f(x)  =  k x2 – 1  

Predator-Prey: f(x,y) = ax(1-x) – b xy, g(x,y) = cy(1-y) + b xy 

 
Fig.1.8(a): Time series plot for regular motion for f(x) = k x2 – 1. 
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Fig.1.8(b): Time series plot for regular motion for predator prey model. 

 

       
Fig.1.8(c): Time series plot for chaotic motion for f(x) = k x2 – 1. 

 

  
Fig.1.8(d): Time series plot for chaotic motion for predator prey model. 

 
1.4.13  Phase Plots 

 
Unlike time series plots, a phase space diagram plots the variables against each 

other and leaves time as an implicit dimension not explicitly graphed. A phase 

portrait is a geometric representation of the trajectories of a dynamical system in 

the phase plane. 
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Phase plots were originally stated by an American physicist J. Willard Gibbs. Phase 

portraits are an invaluable tool in studying dynamical systems. A phase plot of a 

dynamical system depicts the system's trajectories and stable steady states and 

unstable steady states in a state space. When the data is plotted in phase space with 

points in phase space representing the value of each of the variables at each moment 

of time, as the system changes over time, the data points make up a trajectory that 

is called a phase portrait. 

 
 
 
 

      
Fig. 1.9(a) Phase plots for regular attractor. 

 
 

 
Fig. 1.9(b) Phase plots for chaotic attractor. 

  



 27 

1.4.14  Continuous Map: Pendulum Equation 
 

}~�
}�~

+ 𝑘 }�
}�
+ 𝛼𝑥 + 𝛽𝑥� = Γcos𝜔𝑡 

 
For k = 0.2, a = 0, b = 1, Γ = 10, ω = 1, we have chaos shown below 

       
Fig.1.10: Equation of pendulum showing chaos. 

 
1.5 Objectives of the present thesis 

The objective of our research was to study the regularity and chaos in some 

biologically interactive models. Here, we proposed some mathematical models 

which are best fitted to the system and observed their evolutionary dynamics. Then 

we did numerical investigations by using “MATHEMATICA” software. For all the 

theoretical study we used the principles and concepts defined in nonlinear 

dynamics. Following are the main objectives of our research: 

• To determine the fixed points of model according to the nature of parameters 

comprising the system. 

• To study their stability and classification. 

• To find suitable parameter values as well as initial conditions while iterating 

the function for regular evolution as well as for chaotic evolution.  

• To find certain conditions on parameters as well as on initial values to change 

the behaviour of the system e.g. in case of controlling chaos. 

• To make certain conclusions as well as predictions on the systems.  
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1.6 Organization of thesis 

The first chapter gives a small introduction on nonlinear dynamics, chaos and 

regularity followed by importance of the area of research. Concepts like finding 

fixed points and determining their stability, classification of fixed points according 

to their stability criteria has been explained. Strange attractors which are chaotic 

sets with fractal behaviour have also been talked briefly.  Further some research 

work has been reviewed followed by basic definitions, concepts and objectives of 

our research. 

The second chapter sheds some light upon the research methodology. Many useful 

measures like bifurcation analysis, correlation dimension, topological entropy and 

LCEs which are very important for detailed studies of chaos and regularity have 

been explained. 

In chapter 3, Complexity Measure in Simple Type Food Chain System has been 

investigated both analytically and numerically. Regular and chaotic motions have 

been observed for certain sets of values of a parameter of the system. For some 

further study, the continuous model of food chain has been transformed into discrete 

model by using Euler’s method. Various measurable quantities for emergence of 

chaos, like Lyapunov exponents, topological entropies, correlation dimensions, 

have been numerically calculated and represented through plots. Finally, the chaos 

indicator, named Dynamic Lyapunov Indicator (DLI), has been used to identify 

clearly chaotic and regular motion. 

In chapter 4, a problem on dynamics of two-gene Andrecut-Kauffman system has 

been studied for chaos and complexity. The model of this problem consists of 

nonlinear equations, in context of biochemical phenomena obtained from chemical 

reactions appearing in a two-gene model (Andrecut and Kauffman). Here, chemical 

reactions are assumed to correspond to gene expression and regulation. For this 

problem of two gene Andrecut-Kauffmann system, studies have been performed 

carefully to understand chaotic phenomena during its evolution together with 

complexities present in the system. Bifurcation analysis has been carried out to 

understand behaviour of steady state solutions leading to chaotic evolution. For 
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chaotic and complex nature of evolution, numerical simulations have been 

performed to obtain Lyapunov exponents and topological entropies, for certain sets 

of parameters which explains the complexity and chaotic nature of evolution. 

In chapter 5, a simple host-parasite type model has been considered to study the 

interaction of certain plants and herbivores. The two-dimensional discrete time 

model utilizes leaf and herbivore biomass as state variables. The parameter space 

consists of the growth rate of the host population and a parameter describing the 

damage inflicted by herbivores. Perceptive bifurcation diagrams, which give 

insightful results, have been presented here showing chaos and complexity in the 

system during evolution. Measure of complexity and chaos in the system is 

explained by performing numerical calculations and obtaining Lyapunov 

exponents, topological entropies and correlation dimension. Results are displayed 

through interesting graphics. 

In chapter 6, we have worked upon a very interesting mature population model. In 

this chapter, we have worked with a single-species model with stage structure for 

the dynamics in a wild animal population for which births occur in a single pulse 

once per time period. We have tried to analyse regularity and chaos in the system 

by finding bifurcations, topological entropy and Lyapunov exponents. The results 

and findings have been discussed at the end. 

Chapter 7, is the last chapter where we have given a summary of our findings and 

the future prospect of this work. 
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Chapter 2  

Methodology 
 
2.1 Introduction  
 
In this chapter we have talked about the methodology used for our work in detail 

Nonlinearity is present everywhere in physical phenomena. For this reason, an ever-

increasing proportion of modern mathematical research is devoted to the analysis 

of nonlinear systems. They are vastly more difficult to analyse. In the nonlinear 

regime, many of the most basic questions remain unanswered for example the 

existence and uniqueness of solutions are not guaranteed. It is difficult to 

understand the explicit formulae. The principal of linear superposition does not 

hold. All the numerical approximations are not sufficiently accurate. But powerful 

computers have fomented a veritable revolution in our understanding of nonlinear 

mathematics. 

To identify regular and chaotic evolution of a dynamical system, we have some 

tools like time series curves, phase plots, bifurcation diagrams, Lyapunov 

Exponents (LCE), topological entropies and correlation dimension. Since we have 

already discussed in our previous chapter about the time series curves and phase 

plots of dynamical systems, in this chapter we will talk in detail about bifurcations, 

LCE, topological entropy and correlation dimension which are very important to 

study chaos and regularity. In our work, we have majorly worked with these metrics 

to study chaos and its implications. 

For a clear understanding of chaos, one has to observe the bifurcation diagrams 

obtained by varying certain parameters while keeping others fixed and drawing the 

results obtained along a particular variable. This helps a lot in understanding the 

flow of the system along with the bifurcation from one stable steady state to two, 

four, eight . . . leading to chaos. Once the system is chaotic, the next question is 

what is the extent of chaos strong, weak or very weak? Further, how do we measure 

this chaos? We have worked with a few efficient measures of regularity and chaos 

here for example Lyapunov characteristic exponents, topological entropy & 
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correlation dimension. We have also used the time series and phase plots while 

doing our work. Attractors have a big role to play in chaos theory as discussed in 

chapter 1. 

Another very effective indicator of chaos which can be used is DLI which is now 

considered as an accurate indicator. Once we identify chaos in a system, we need 

to find out suitable methods to control the chaos and bring regularity in the system. 

Different techniques work in different systems. So, while doing all this analysis we 

have to be very sure of our numerical simulations. Hence apt mathematical methods 

and a strong conceptual framework is a must in this regard. 

The Lyapunov exponents, (also known as Lyapunov Characteristic Exponents or 

LCEs), actually provide a measure of regular and chaotic motion. The positivity of 

LCE implies the motion is chaotic means two orbits originating nearby show 

divergence of   behaviour. Predictability fails if LCE >0. But, negative value of 

LCE implies the motion is regular or periodic. In such a case one can predict the 

evolution.  

2.2 Mathematical Calculation of LCE for a Discrete Map x n + 1 = 
f(xn ).  
 

Recalling the calculations, we have done during our stability analysis of a fixed 

point, if x* be a fixed point of system xn+1 = f(xn) and x0 be any initial point nearby 

x*such that x0 = x* + δ0, where δ0 is very small distance of x0 from x*.  

Denoting x1 = f(x0) = f (x* + δ0), and expanding we get  

x1 = f(x0) = f(x* + δ0) = f(x*) + δ0 (df/dx)|x*+… 

Omitting higher order small terms, as x* = f(x*), we get 

(𝑥d − 𝑥∗) ≈ 𝛿7|𝑓`(𝑥7)| 

which means 𝛿d = 𝛿7|𝑓`(𝑥7)| 

where δ1 = (x1 – x*) = distance of x1 from x*. 
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If x0 be a periodic point of period k, and two orbits start nearby at x0 and at x0 ± 

δ0. Then after one iteration the distance between the two is approximated by 

𝛿d ≈ |𝑓′(𝑥7)|𝛿7 = 𝑀7𝛿7 

 

where M0 is called the magnification factor for first step. At the second step  

𝛿f ≈ |𝑓′(𝑥d)|𝛿d = 𝑀d𝛿d�𝑀d𝑀7𝛿7 

where M1 is the magnification factor for the second step. Continuing in this 

manner, we conclude that the total magnification factor over one cycle of the 

period k orbit is the product 

                                            M0 M1 . . . Mk – 1  

Since this product is an accumulation of magnification factors, it makes sense to 

consider some average of it. The most convenient is the geometric average  

(𝑀7𝑀d……...𝑀��d)
d
�		

	

which by taking logarithms leads to the arithmetic average. 

𝜆 = 𝑙𝑜𝑔(𝑀7𝑀d……...𝑀��d)
d
�	 

𝜆 =
1
𝑘
(𝑙𝑜𝑔𝑀7 + 𝑙𝑜𝑔𝑀d +⋯… . 𝑙𝑜𝑔𝑀��d) 

=
1
𝑘
(log	|𝑓`(𝑥7)| + log	|𝑓`(𝑥d)| + ⋯ log	|𝑓`(𝑥��d)|) 

Condition for stability of a periodic orbit is that the average magnification factor is 

less than 1, which is equivalent to λ < 0 (stable) & λ > 0 (unstable). 

Definition: Lyapunov exponent  

Let f be a smooth map on R and let x0 be a given initial point. Lyapunov exponent 

λ (x0) of a map f is given by  
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𝜆(𝑥7) = lim
�→�

1
𝑘
(log	|𝑓`(𝑥7)| + log	|𝑓`(𝑥d)| + ⋯ log	|𝑓`(𝑥��d)|) 

 

Example: Consider the logistic map f(x) = λ x (1 – x), for 1 ≤ λ ≤ 4, the plot of 

Lyapunov exponents is given below. 

 

  

Fig.2.1 LCE plot of Logistic Map.  
 

2.3 Bifurcation analysis  
 
In ordinary sense, bifurcation means splitting into two. Similar behaviour also 

occurs in dynamical systems and so is the name. In case of a dynamical 

system, bifurcation occurs when a small smooth change is made to values of certain 

parameters of the system. A stable fixed point becomes unstable at some step and 

suddenly two stable solutions appear i.e. one stable cycle splits into two stable 

cycles, then 2-cycles becomes 4-cycles and so on. Actually, one observes the 

phenomena of sudden 'qualitative' or topological change in the behaviour of the 

system.    

Bifurcation theory is the mathematical study of changes in the qualitative 

or topological structure of a system during evolution. A bifurcation of a dynamical 

system is a phenomenon to observe qualitative change in its dynamics produced by 
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varying parameters. This theory provides a strategy for investigating the 

bifurcations that occur within a family.  

Bifurcation literally means splitting into two. The name "bifurcation" was first 

introduced by Henri Poincaré in 1885. In  dynamical systems, a bifurcation occurs 

when a small smooth change made to the parameter values of a system causes a 

sudden 'qualitative' or topological change in its behavior. Bifurcations occur in both 

continuous systems and discrete systems. Bifurcation(s) result when certain 

parameters on the dynamical equations, that is conditions affecting the system, 

reach critical thresholds (May, 1976). Usually, at a bifurcation, the local stability 

properties of equilibria, periodic orbits or other invariant sets change. Bifurcations 

are of two types: 

i) Local bifurcations, which can be analyzed entirely through changes in the local 

stability properties of equilibria, periodic orbits or other invariant sets as parameters 

crossing through critical thresholds. 

ii) Global bifurcations, which often occur when larger invariant sets of the system 

collide with each other, or with equilibria of the system. 

The nature of the solutions to a dynamical system, defined by a suitable differential 

equation, may change abruptly as a function of some control parameter. The most 

commonly observed transitions in dynamical states are “bifurcations”. A careful 

study of bifurcation diagram can lead to many observations in a system (Khalil, 

2002, Kuznetsov et al., 2003, S., 2013). 

Starting with initial conditions, with change in time, evolution in a dynamical 

system takes place for a certain set of parameter values. Now if we vary a single 

parameter while keeping other parameters fixed and then observe the change in the 

system along one of its particular variable and then draw the corresponding graphics 

and by observing this we can analyse the behaviour of the system. In this process 

we find a stable fixed point which becomes unstable for a while and then suddenly 

changes into two stable fixed points at some parameter value.  This is a qualitative 

change at a particular value of the parameter. Also, at these parameter values one 
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cycle splits into two cycles and hence we see a bifurcation. This point is called a 

bifurcation point. Continuing the processes, we find another parameter values 

where two cycles split into four cycles, then eight, sixteen, thirty-two etc. After a 

while, the system becomes regular because of the property of predictability. When 

there is no more predictability, the system is unpredictable and chaotic. The 

bifurcation diagram illustrates all the information of this evolution. Thus, in the 

system one observes period doubling which leads to chaos.  

We have used the following code to find bifurcations for the Plant-Herbivore model 

where we worked with MATHEMATICA. 
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In similar way, we have used  MATHEMATICA codes for calculating Bifurcation 

diagrams for all the models and, also, to calculate Lyapunov exponents, 

Topological Entropies and Correlation dimensions. 
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2.4 Measure of chaos 

Introducing a quantitative measure of chaos is important for several reasons. Most 

importantly it allows us to define exactly what we mean by chaos. We use measures 

like Lyapunov characteristic exponent, correlation dimension and topological 

entropy to do the same. Having such measures of chaos allows us to go further 

quantitatively and compare different systems. We can rationalize what we mean by 

saying that one system is more chaotic than another system. Thus, we can compare 

the extent of chaos of a system with different parameter values, or the chaos in two 

completely different systems. 

2.4.1 Lyapunov Characteristic Exponent  

Lyapunov exponents is a quantitative measure of the exponential divergence of 

nearby trajectories. When a Lyapunov exponents is positive, system is chaotic i.e. 

the trajectories diverge while a negative Lyapunov characteristic exponent indicates 

convergence of the trajectories (Strogatz, 1994). The systems show a strange 

attractor for certain parameter values. We calculate the dimensions of these 

attractors and see that the dimensions don’t have to be an integer.  

Consider any one-dimensional map defined in some interval (a, b)  

x>�d = 	f	(x>) 

 

and two of its orbits starting at  x7 and x0 + δ0 where  δ7 is very small. Then, 

expanding f(𝑥7+δ7) by Taylor series, after one iteration we find the distance 

between the orbits as 

δd = |f `(x7)|δ7  = M7δ7 

 

M0 is known as first step magnification factor.  Similarly, at the second iteration, 

the distance between the orbits can be written as 
 

δf = |f `(xd)|δd   = Mdδd = MdM7δ7 
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We continue for n iterations and separation between the orbits at nth iteration is 
 

δ> = |f `(x>�d)|δ>�d  = M>�dδ>�d = M>�dM>�f …M7δ7 

 

The product M>�dM>�f …M7δ7	 

is the accumulation of magnification factors, so we consider its average value. 

The most convenient average to consider here is the geometric average 
 

(M>�dM>�f …M7δ7)
d
> 

 

Taking log, one obtains the arithmetic average 

𝝀 = 𝐥𝐧(𝑴𝒏�𝟏𝑴𝒏�𝟐 …… .𝑴𝟎𝜹𝟎)
𝟏
𝒏 

                                           = 𝟏
𝐧
(𝐥𝐧𝐌𝐧�𝟏 + 𝐥𝐧𝐌𝐧�𝟐 +⋯) 

=
𝟏
𝐧 (𝐥𝐧

|𝐟`(𝐱𝟎)| + 𝐥𝐧|𝐟`(𝐱𝟏)| + 𝐥𝐧|𝐟`(𝐱𝟐)| + ⋯+ 𝐥𝐧|𝐟`(𝐱𝐧�𝟏)|) 

 

If 𝜆 < 1, the orbit is stable and if If 𝜆 > 1	the orbit is unstable. For more accurate 

result, large iterations should be taken into account. This leads to the following 

definition of Lyapunov exponents. 

 

 

Lyapunov exponents of a smooth map f on R with	x7 as initial point may be 

defined as: 

 

𝛌(𝐱𝟎) = 𝐥𝐢𝐦
𝐧→�

𝟏
𝐧 (𝐥𝐧

|𝐟`(𝐱𝟎)| + 𝐥𝐧|𝐟`(𝐱𝟏)| + 𝐥𝐧|𝐟`(𝐱𝟐)| + ⋯

+ 																	𝐥𝐧|𝐟`(𝐱𝐧�𝟏)|) 

 

provided the limit exists.  

Lyapunov number is the exponent of Lyapunov exponent and is given by  

 

L(x7) = e¨(©ª)     
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From above definition, a clear interpretation for Lyapunov exponent is given as:  

It is the measure of loss of information during the process of iterations. 

For higher dimensional system, we can generalize the above one-dimensional case 

to obtain 

 

and    , 

 

where X ϵ Rn, F: Rn → Rn , U0 = X0 - Y0. 

J is the Jacobian of the map F. 

Quantitatively, two trajectories in phase space with initial separation δx7 diverge if 

 

                                             
where λ is the Lyapunov exponent. The system described by the map	F is regular 

for λ ≤ 0 and chaotic when λ > 0. 

 

For all numerical simulations to find all the LCEs during our calculations we have 

used MATHEMATICA and developed codes like this. 

 

Clear[r, a, x, y] 

f[x_, y_] := x Exp[r (1 - x) - a y]; 

g[x_, y_] := x Exp[r (1 - x)]*(1 - Exp[-a y]); 

M[x_, y_] := {{E^(r (1 - x) - a y) - E^(r (1 - x) - a y) r x, -a E^( 

r (1 - x) - a y) x}, {E^(r (1 - x)) (1 - E^(-a y)) -  

E^(r (1 - x)) (1 - E^(-a y)) r x, a E^(r (1 - x) - a y) x}} 

a = 1.5; r = 3.25 

#q = #[#[1, 0},# [0, 1}}; 

x = 0.2; y = 0.5; n = 1; 

Õ
-

=¥®
=

1n

0t 0U)t(XJlog
n
1

lim
n

)0U,0(Xλ

n)0U,0(XλenYnX »-

(0)δxtλe(t)δx »
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q1 = Table[{n, u = x, n, v = y, q = M[x, y].q, n,  

Log[(Max[Abs[Eigenvalues[q]]])^(1/n)], n = n + 1, x = f[u, v],  

y = g[u, v]}, {10000}]; 

p = MatrixForm[q1[[Range[5000, 5030], Range[6, 7]]]] 

k = q1[[Range[5000, 7000], Range[6, 7]]]; 

plot1 = ListPlot[k, PlotRange -> All,  

PlotStyle -> {Thickness[0.008], Blue}, Frame -> True,  

FrameLabel -> {"n", "LCE"}, Joined -> True, Ticks -> Automatic] 

 

2.4.2 Topological Entropy  
 
Lyapunov exponents are a great help in measuring chaos but they have a few 

limitations to their use. Lyapunov exponents are local in nature and are not 

necessarily constant throughout the evolution and so ergodicity is also required to 

characterize chaos. Conceptually, Lyapunov exponents are time dependent and so 

it isn’t great for systems arising from relativistic considerations.  

A chaotic attractor is composed of a complex pattern. To investigate chaotic 

behaviour in a wide variety of systems evolving with time, an alternate replacement 

of Lyapunov exponents which could be more reliable and acceptable as an indicator 

is the topological entropy (Iwai, 1998, Balmforth et al., 1994, Gora and Boyarsky, 

1991, Bowen, 1970). The concept of topological entropy was first introduced by 

Adler, Konhelm and McAndrew in the 1960s Topological entropy describes the 

rate of mixing of a dynamical system. It is related to Lyapunov exponents both 

through the dependence of rate and to the ergodicity. 

 

For a system having non-zero topological entropy, the rate of mixing must be 

exponential which is comparable to Lyapunov exponents. Though such 

exponentiality is not relative to time, rather to the number of discrete steps through 

which the system has evolved. Positivity of Lyapunov exponent and topological 

entropy are characteristic of chaos. The book by Nagashima and Baba (Nagashima 

and Baba, 1998) gives a very clear definition of entropy. 

 

Consider a finite partition of a state space X denoted by  
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A = {A1,A2,…………..AN}. 
 

Then a measure µ on X with total measure µ(X) = 1 defines the probability as  

𝒑𝒊 = 𝝁(𝑨𝒊), i = 1,2,……..N. 
𝐇(𝐀) = −∑ 𝐩𝐢	𝐋𝐨𝐠	𝐩𝐢𝐍

𝐢�𝟎   

 

Then the entropy of the partition be given by  

𝐇(𝐀) = −·𝐩𝐢	𝐋𝐨𝐠	𝐩𝐢

𝐍

𝐢�𝟎

 

 

The code for topological entropy used is described as follows: 

 

Clear[r, a, x, n, y] 

f[x_, y_] := x Exp[r (1 - x) - a y]; 

g[x_, y_] := x Exp[r (1 - x)]*(1 - Exp[-a y]); 

a = 1.5; r = 2.25; x = 0.3; y = 0.9; n = 0; 

entropy[p_List] := -p.Log[p] 

Clear[r, a, x, n, y] 

a = 1.5; 

fxdata[r_] := ( 

x = 0.3; y = 0.9; xLL = {}; 

Do[t = i; { x = x Exp[r (1 - x) - a y];  

y = x Exp[r (1 - x)]*(1 - Exp[-a y]) }; 

If[t < 400, Continue[], xLL = Append[xLL, x]], {i, 500}];  

fxdata[r] = xLL) 

prob[r_] :=  

Select[1/500 BinCounts[fxdata[r], {0, 1, 1/500}], Positive] 

entropylist = Table[{r, entropy[prob[r]]}, {r, 0.0, 0.8, 0.01}]; 

p2 = ListPlot[entropylist, PlotStyle -> {Thickness[0.01], Red},  

PlotRange -> All, Joined -> True, Frame -> True,  

FrameLabel -> {"r ", "\!\(\* 

StyleBox[\"entropy\",\nFontSize->16,\nFontColor->GrayLevel[0]]\)\!\(\* 
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StyleBox[\" \",\nFontSize->16,\nFontColor->GrayLevel[0]]\)"},  

Ticks -> Automatic, GridLines -> Automatic] 

 

2.4.3 Correlation Dimension 
 

In chaos theory, the correlation dimension is a measure of the dimensionality of the 

space occupied by a set of random points. Correlation dimension provides a 

measure of dimensionality of the chaotic attractor. It is a very practical and efficient 

method as compared to many other methods. Being one of the characteristic 

invariants of nonlinear system dynamics, the correlation dimension also gives a 

measure of complexity for the underlying attractor of the system.  

The calculation of correlation dimension involves some statistical concepts. 

Correlation dimension is calculated after drawing the correlation curves for each 

system. For this, first, we have collected data for the correlation curves plotted for 

each model and then used the method of least square linear fit described by Martelli 

(Martelli, 2011) and Nagashima and Baba (Nagashima and Baba, 1998) to obtain 

correlation dimensions.  

Correlation dimension is a kind of fractal dimension and its numerical value is 

always non-integer. To calculate this, we have used the following procedure 

(Martelli, 2011). 

Consider an orbit 

O(x1)={x1, x2, x3, x4,…………….} 
 

for a map f:	U	 → 	U, where 𝑈 is an open bounded set in 𝑅5. To compute correlation 

dimension of O(xd), for a given positive real number 𝑟, we form the correlation 

integral, 

 

𝐂(𝐫) = 𝐥𝐢𝐦
𝐧→�

𝟏
𝐧(𝐧 − 𝟏)·𝐇(𝐫 − ¾𝐱𝐢 − 𝐱𝐣¾

𝐧

𝐢À𝐣

) 

 

where        H(x) = Â0, 𝑥 < 0
1, 𝑥 ≥ 0 
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is the Heaviside unit-step function. The summation indicates the number of pairs of 

vectors closer to r when  1	 ≤ 	i, j	 ≤ 	n and i	 ≠ 	j.	 

Here, C	(r	) measures the density of pair of distinct vectors  xÈ and xÉ		  that are closer 

than 𝑟. Finally, the correlation dimension 𝐷Ê is defined as 

𝑫𝒄 = 𝒍𝒊𝒎𝒓→𝟎 =
𝐥𝐧 𝑪(𝒓)
𝐥𝐧 𝒓  

In practice, we select a large number	of  n states of orbit	O(xd), and approximate 

C(r) for several different values of		r. Then the ratio  Ò> Ó(Ô)
Ò> Ô

 is plotted with  r and the 

y-intercept of the line obtained by least square linear fit to the correlation integral 

data is regarded as a reasonable estimate of DC where the slope is sufficiently small. 
 

2.5 Chaos and regularity Indicators 
 
While working with chaos theory and dynamical systems, even though the 

conventional tools like time series, phase plots, bifurcation diagrams etc. are the 

most commonly used still other indicators are also widely used as powerful tools in 

developing the theory and results. We have already talked about a few of these in 

this thesis.  

Some more chaos indicators like Fast Lyapunov Indicator (FLI) and Smaller 

Alignment Indices (SALI) are also very useful during study of chaos and regularity.  

Dynamic Lyapunov Indicator (DLI) which is a new indicator has also been 

mentioned. A brief introduction of these indicators is as follows:  

 

2.5.1 Fast Lyapunov Indicator 
 

Fast Lyapunov indicator is a method which is based on the variation of the length 

of vectors evolving in tangential space with time, which distinguishes very quickly 

between regular and chaotic motion. FLI’s increase exponentially for chaotic orbits 

and linearly for regular orbits. 

Starting with m-dimensional basis, 

Vm(0) = (v1(0),v2(0),…………vm(0)) 

Embedded in n-dimensional space with an initial condition 

x1(0),x2(0)……………….xm(0) 
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for each iteration we take the largest amongst the vectors of the evolving basis. 

Thus, the FLI is defined as: 
 

FLI = sup	¾vÉ¾, j = 1,2, … ,m 

 

2.5.2 Dynamic Lyapunov Indicator 
 

The Dynamic Lyapunov Indicator (DLI) is defined as the largest value estimated 

among all eigenvalues	λÉ of the Jacobian matrix 𝐽 such that |𝐽 − 𝜆Ú𝐼| = 0; 𝑗 = 1,2…𝑛.  

(for n-dimensional map) of the examined map for all discrete times. We plot the 

largest eigen value at every time step of the evolving Jacobian matrix and we 

observe these eigenvalues. 

If the eigenvalues form a definite pattern, then the motion is regular and if they are 

distributed randomly (with no pattern), then the motion is chaotic.  

 

2.5.3 Smaller Alignment Index 
 

The Smaller Alignment Index (SALI) is a very useful and efficient indicator that 

can distinguish rapidly and with certainty between ordered and chaotic motion. 

SALI behaves different in the two cases (chaos and regularity), as it fluctuates 

around non-zero values for ordered orbits and converges exponentially to zero for 

chaotic orbits. 

First consider n-dimensional phase space and an orbit in this space with initial 

condition 

P(0) = (x1(0),x2(0),……………xn(0)) 

and a deviation vector  

x(0) =  (dx1(0),dx2(0),……………dxn(0)) 

for the initial point	𝑃(0).To compute the SALI for a given orbit, we follow the 

time evolution of the orbit of P(0) together with two deviation vectors x1(t), x2(t) 

which initially points in two different directions in the phase space. At every time 

step, the two deviation vectors x1(t), x2(t) are normalized and the SALI is then 

defined as follows: 
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SALI =   
 

The SALI fluctuates around a non-zero value for ordered orbits while it tends to 

zero for chaotic orbit. 

The measures mentioned above are useful indicators of regularity and chaos in a 

system. In our work, we have used these metrics to analyse the systems under 

study.   
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Chapter 3  

Complexity Measure in Simple Type Food Chain 
System 
 
 
3.1 Introduction 

 
Study of ecological systems of nature are of growing importance in many areas of 

research these days. A real natural system is full of nonlinearity and its dynamics 

are very complex. Prey-Predator interactions have many applications of 

mathematics to biology. In this regard, Lotka-Volterra predator-prey model is a 

very simple model proposed by Lotka (Lotka, 1925) and Volterra (Volterra, 1926). 

Researchers have found very interesting evolutionary characters and suggested 

more studies in food chain systems. Three species food chain system was described 

by many researchers (Rosenzweig and MacArthur, 1963). Because of availability 

of effective computational techniques these days, much deeper investigations are 

possible and new interesting results may emerge. With time, techniques have been 

developed to obtain conditions for a model of a predator-prey system with mutual 

interference to possess a globally stable positive equilibrium (Freedman and So, 

1985).  

The appearance of chaos in a continuous time model of a food chain incorporating 

nonlinear functional model suggests that chaotic dynamics may be common in 

natural food webs (Hastings and Powell, 1991). Many researchers have worked 

with food chain models with varied ideas (Muratori and Rinaldi, 1992), (Boer et 

al., 1999), (De Feo and Rinaldi, 1998), (Deng and Hines, 2002). Studying 

ecological chaos is not a trivial task but mathematical models of food chains have 

made the study of theoretical chaos possible. Since there can be many constraints 

in terms of laboratory infrastructure or the costs associated with other techniques, 

studying the problems associated with arising and disappearing of chaos from food 

chains is a very attractive mathematical field. Such detailed and deep understanding 

can help in developing insights into evolutionary dynamics of predator prey models. 
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A detailed review of food chain research articles can be obtained from the article 

by Deng (Deng, 2001)  and by Elsadany (Elsadany et al., 2012). 

Study of complexities arising during evolution of a food chain system has been 

investigated here. We have worked with a classical mathematical model for three-

trophic food chains modified and used by Bo Deng (Deng, 2006). The Rosenzweig-

MacArthur food chain model (Rosenzweig and MacArthur, 1963) has been used by 

many authors for food chain chaos. Bo Deng modified Rosenzweig-MacArthur 

food chain model with the inclusion of intraspecific competing predators tending to 

stabilize food chains. 

We have intended to study the complexities arising during evolution in this food 

chain system. Regular and chaotic motions have been observed for certain sets of 

values of a parameter of the system. For detailed further study, the continuous 

model of food chain has been transformed into discrete model by using Euler’s 

method. Various measurable quantities for emergence of chaos, like Lyapunov 

exponents, topological entropies, correlation dimensions, have been numerically 

calculated and represented through plots. Finally, the chaos indicator, named 

Dynamic Lyapunov Indicator (DLI), has been used to clearly identify chaotic and 

regular motion. 

 

3.2 The Model  
 

Consider the following model for three-trophic food chain: 

 
}à
}�
= 𝑟𝑋 v1 − à

�
{ − áâà

ãâ�à
𝑌                                (1) 

 
}å
}�
= 𝑌 væâáâà

ãâ�à
− 𝑑d − 𝑠dY{ −

áâå
ã~�å

𝑍                (2) 

 
}é
}�
= 𝑍 væ~á~å

ã~�å
− 𝑑f − 𝑠fZ{                                 (3) 
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where, X, Y and Z denote the population densities, respectively for prey, predator, 

and top-predator populations. K is the carrying capacity of the prey population in 

absence of the predator population and in such a case r denotes the maximum per 

capita growth of the prey population.  

The parameters b1, b2 are the birth- to –consumption ratios for predators; H1, H2 are 

the semi-saturation constants; p1, p2 are the maximum per capita capture rates; d1, 

d2 are per capita minimum death rate for each predator and the products s1Y, s2Z 

are additional per capita density dependent death rate of each predator. For a simple 

mathematical analysis and equivalent dynamics, we have used the dimensionless 

form. 

Dimensionless approach typically generalizes the problem as dimensionless 

solution depends on a set of dimensionless parameters. Non-dimensionalising helps 

one to decide which are the relevant variables and how they might be related. The 

use of a dimensionless model is a common way to study a wide variety of physical 

phenomena or engineering problem, or even economical tasks. A dimensionless 

equation, (algebraic or differential), involves variables without physical dimension. 

The purpose of dimensionless equations is: 

• To simplify the equation(s) by reducing the number of variables used. 

• To analyse system behaviours regardless of the unit used to measure 

variables. 

• To rescale parameters and variables so that all computed quantities are of 

same order (relatively similar magnitudes). 

A dimensionless number is associated with a value that could be iterated by 

dimensional analysis.  

However, the dimensionless equations have a great impact on nonlinear 

phenomena. In the linear case physical parameters are involved in transformations 

hence solving any single dimensional system can give an idea about all others 

having the same behaviour. This can be said for nonlinear systems only when they 

have same behaviour in non-dimensional form. 

Dimensionless form often shows very clearly that not the original variables but 

rather their ratios (or other combinations) govern the qualitative type of solution. 



 50 

We have used the following changes of variables and parameters to transform the 

equations to a dimensionless form: 

𝑡 → 𝑏d𝑝d𝑇 

𝑥 = à
�

 , 𝑦 = å
åª

 , 𝑧 = é
éª

 , 𝛽d =
ãâ
�

 , 𝛽f =
ã~
�

 , 

𝑌7 =
Ô�
áâ

 , 

𝑍7 =
æâÔ�
á~

 , 

𝛿d =
𝑑d
𝑏d𝑝d

 

𝛿f =
𝑑f
𝑏f𝑝f

 

𝜎d =
𝑠d𝑌7
𝑏d𝑝d

 

𝜎f =
𝑠f𝑍7
𝑏f𝑝f

 

𝜁 =
𝑏d𝑝d
𝑟  

𝜀 =
𝑏d𝑝d
𝑏f𝑝f

 

 

 

 

 

The new dimensionless equations now become: 

 

 

𝜁�̇� = 𝑥 v1 − 𝑥 − ð
ñâ��

{                                                    (4) 

 

�̇� = 𝑦 v �
ñâ��

− 𝛿d − 𝜎d𝑦 −
ò

ñâ��
{                                          (5) 

 

�̇� = 𝜖𝑧 v ð
ñ~�ð

− 𝛿f − 𝜎f𝑧{                                                  (6) 
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3.3 Time series and phase plots  
 
The time series and phase plot chaotic attractors for the continuous system (4) – (6) 

are given in Figure 3.1 for parameter values, 𝜁 = 	0.02, 𝛽d 	= 	0.26, 𝛽f 	= 	0.5,

𝛿d = 	0.2, 𝛿f 	= 	0.18, 𝜎d 	= 	0, 𝜎f 	= 	0.1	&	𝜖	 = 	0.375.  

 
 
 

 
Fig.3.1(a): First plot for time series for chaotic motion when z = 0.02,  b1 = 
0.26,  b2 = 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 

 

 
Fig.3.1(b): Second plot for time series for chaotic motion when z = 0.02,  b1 

= 0.26,  b2 = 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 
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Fig.3.1(c): Third plot for time series for chaotic motion when z = 0.02,  b1 = 
0.26,  b2 = 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 

 
 

 
Fig.3.1(d): First phase plot for chaotic motion when z = 0.02,  b1 = 0.26,  b2 
= 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 
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Fig.3.1(e): Second phase plot for chaotic motion when z = 0.02,  b1 = 0.26,  
b2 = 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 

 
 

 

Fig.3.1(f): Third phase plot for chaotic motion when z = 0.02,  b1 = 0.26,  b2 
= 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1 and Ɛ = 0.375. 

 
The continuous system’s regular motion can be observed when we increase 

parameter 𝜁 keeping other parameters intact. For  𝜁 = 0.7, the above type of plot 

shows regular motion. The time series and phase plots in this regard are given 

below: 
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Fig.3.2(a) First time series plot for regular motion when 𝜻 = 0.7. 
 

 

Fig.3.2(b) Second plot for time series for regular motion when 𝜻 = 0.7. 
 

 

Fig.3.2(c) Third plot for time series for regular motion when 𝜻 = 0.7. 
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Fig.3.2(d) First phase plot for regular motion when 𝜻 = 0.7. 
 

 
Fig.3.2(e) Second phase plot for regular motion when for 𝜻 = 0.7. 

 

 
Fig.3.2(f) Third phase plot for regular motion when 𝜻 = 0.7. 
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Now extending our numerical calculations we transformed the continuous model 

shown by equations (4) – (6). The continuous model is converted into a discrete 

model because for studying evolutionary phenomena of real systems, observations 

are made in discrete time and not continuously. As for example, calculations of 

populations are done on yearly basis and most of the observational data for 

experiments are done in discrete time manner at certain intervals. Therefore, 

changing a continuous model into discrete may be justified in the sense that the 

results obtained would be more meaningful. Additionally, long term behaviour of 

a real system can be better analysed if the system is in discrete form. A discrete 

form of above continuous model can be obtained by Euler’s method and written as: 

 

𝑥5�d=𝑥5 +
ù
ú
𝑥5(1 − 𝑥5 −

ðû
ñâ��û

) 

𝑦5�d=𝑦5 + ℎ𝑦5(
�û

ñâ��û
− 𝛿d − 𝜎d𝑦5 −

òû
ñ~�ðû

) 

𝑧5�d=𝑧5 + ℎ𝜖𝑧5(
ðû

ñ~�ðû
− 𝛿f − 𝜎f𝑧5)                                        (7) 

where h must be taken as a very small positive number, i.e.  0 < h << 1. This 

h would be considered as a parameter of system (7). 
 

3.4 Bifurcation Analysis and attractors  
 
Bifurcation diagrams of discrete food - chain model (7), obtained by varying 𝜖, are 

obtained along all three coordinate planes and shown in Figure 3.3. Parameters are 

chosen as h=0.001, 𝜁 = 0.01,  𝛽d= 0.26, 𝛽f = 0.5, 𝛿d= 0.2, 𝛿f = 0.18, 𝜎d= 0, 𝜎f = 

0.1 and varying 𝜖 such that  2.5 ≤ 𝜖 ≤ 3.5. 
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Fig.3.3(a) Bifurcations along x-axis for h=0.001, 𝜻 = 0.01,  𝜷𝟏= 0.26, 𝜷𝟐 = 
0.5, 𝜹𝟏= 0.2, 𝜹𝟐 = 0.18, 𝝈𝟏= 0, 𝝈𝟐 = 0.1 &  𝟐.𝟓 ≤ 𝝐 ≤ 𝟑. 𝟓. 

 

 

Fig.3.3(b) Bifurcations along y-axis for h=0.001, 𝜻 = 0.01,  𝜷𝟏= 0.26, 𝜷𝟐 = 
0.5, 𝜹𝟏= 0.2, 𝜹𝟐 = 0.18, 𝝈𝟏= 0, 𝝈𝟐 = 0.1 &  𝟐.𝟓 ≤ 𝝐 ≤ 𝟑. 𝟓. 
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Fig.3.3(c) Bifurcations along z-axis for h=0.001, 𝜻 = 0.01,  𝜷𝟏= 0.26, 𝜷𝟐 = 
0.5, 𝜹𝟏= 0.2, 𝜹𝟐 = 0.18, 𝝈𝟏= 0, 𝝈𝟐 = 0.1 &  𝟐.𝟓 ≤ 𝝐 ≤ 𝟑. 𝟓. 

 
However, by choosing h a greater value, h = 0.01 and keeping other parameters 

same, the above bifurcation diagrams have certain changes and shown below. 
 
 

 
Figure 3.4:  Bifurcation diagrams when h = 0.01. 

 

We see from above figures that the motion seems to be chaotic or irregular within   
2.5 ≤ 𝜖 ≤ 2.7. 
 

To obtain regular attractor of the discrete map (7), we have used h=0.01, 𝜁 = 0.01,  

𝛽d = 0.26,   𝛽f =  0.5,  𝛿d  = 0.2, 𝛿f = 0.18, 𝜎d  = 0, 𝜎f = 0.1and 𝜖= 0.05. The figure 

below is for time series and phase plot in x-y plane.  These clearly show that the 

motion is quasi-periodic and so regular. We proceed our numerical calculations 
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further to obtain the set of parameters for which the evolution of the map (7) is 

chaotic. 
 

 
Fig.3.5(a): First chaotic evolution plot when h=0.01, z = 0.01,  b1 = 0.26,  b2 
= 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s2 = 0.1and Ɛ = 0.05. 

 

 

Fig.3.5(b): Second chaotic evolution plot when h=0.01, z = 0.01,  b1 = 0.26,  
b2 = 0.5,  d1 = 0.2, d2 = 0.18, s1 = 0, s1 = 0.1and Ɛ = 0.05. 

 

 

Figure 3.5(c): The x-y phase plot shows that the motion is quasi-periodic type. 
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3.5 Numerical Simulations for Complexity: Calculations of 
Lyapunov Exponents, Topological Entropy and Correlation 
Dimensions. 

 

The complexity of a physical system or a dynamical process expresses the degree 

to which components engage in organized structured interactions. High complexity 

is achieved in systems that exhibit a mixture of order and disorder (randomness and 

regularity) and that have a high capacity to generate emergent phenomena. 

Complexity in a deterministic dynamical system means certain features that 

strongly related to the nonlinearity of the system. In this regard mathematics has 

the largest role in contribution to the study of complex systems leading to the 

discovery of chaos in deterministic systems during long term evolution. Such 

systems comprise of many interacting parts and can generate a new quality of 

collective behaviour through self-organization, e.g. the spontaneous formation of 

temporal, spatial or functional structures.  These systems are often characterized by 

extreme sensitivity to initial conditions as well as emergent behaviour that are not 

readily predictable or even completely deterministic. These concepts can be viewed 

through the calculations for Lyapunov exponents, topological entropies and 

correlation dimensions. 

 

3.5.1 Lyapunov Exponents (LCEs):  
 
Lyapunov exponents are dynamical measures capable of characterizing 

deterministic chaos in the system which features to the highly sensitive dependence 

on initial conditions. Actually, it means the exponential divergence of orbits 

originated closely with very small difference in initial conditions. Calculation of 

Lyapunov Exponents is an important and effective element to identify regularity 

and chaos in the system and can be explained in the following ways:  

From above definition, a clear interpretation for Lyapunov exponent is given as:  it 

is the measure of loss of information during the process of iteration.  

For a n dimensional system, Lyapunov exponents can be defined by the expression  
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where X ∈ Rn, F: Rn → Rn, U0 = X0 – Y0 and J is the Jacobian matrix of map F and 

    , 
X0 and Y0 are initial points of   two trajectories which are supposed to be very 

close to each other. 

Taking h=0.01, 𝜁 = 0.01,  𝛽d = 0.26,   𝛽f =  0.5,  𝛿d  = 0.2, 𝛿f = 0.18, 𝜎d  = 0.1, 𝜎f 

= 0.05 and 𝜖= 0.05,0.1,0.2,0.3,0.4,0.5 and 0.6 we have calculated Lyapunov 

exponents. Plots of values of LCEs are shown in the figure below. 

 

 
 
 

Fig.3.6(a): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.05. 

 
 
 

 
 

Fig.3.6(b): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.1. 
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Fig.3.6(c): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.2. 

 

 

 

 

 
 

Fig.3.6(d): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.3. 
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Fig.3.6(e): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.4. 

 

 

 

 

 
Fig.3.6(f): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.5. 
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Fig.3.6(g): LCE’s with h=0.01, 𝜻 = 0.01, 𝜷𝟏 = 0.26,𝜷𝟐 = 0.5,  𝜹𝟏  = 0.2, 𝜹𝟐 = 
0.18, 𝝈𝟏  = 0.1, 𝝈𝟐 = 0.05 & 𝝐= 0.6. 

 
Study of above plots reveals the fact that for 𝜖 = 0.05, 0.1, 0.2, 0.3, 0.5 system 

evolution becomes chaotic but when Ɛ further increases, e.g. 𝜖 = 0.6, LCEs are 

negative and system returns to regularity. This type of situation may arise when we 

choose other sets of parameters. 
 
Extending the numerical simulations further one obtains the plots for Lyapunov 

exponents (LCE) for the chaotic motion as shown in Figure 3.7. 
 

                                        
Fig.3.7: Plot of Lyapunov exponents for the chaotic motion. 

 

3.5.2 Topological Entropy  
 
Chaotic attractors of a dynamical system are composed of complex pattern and as 

the Lyapunov exponent has certain limitations as mentioned in chapter 2. Hence,. 
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to investigate the chaotic behaviour of any system in a broader spectrum, a better 

acceptable indicator is the topological entropy. Actually, the topological entropy 

indicates the complexity of the system. Definition and mathematical derivation of 

topological entropy was given by Bowen (Bowen, 1973), Gribble (Gribble, 1995), 

Nagashima and Baba (Nagashima and Baba, 1998)  and in the articles by Saha and 

Kumra (Saha and Kumra, 2013). 

Taking h=0.01, 𝜁 = 0.01,  𝛽d = 0.26,   𝛽f =  0.5,  𝛿d  = 0.2, 𝛿f = 0.18, 𝜎d  = 0.1, 𝜎f 

= 0.05 and varying  𝜖 one can observe easily the evolution is chaotic when  𝜁 = 0.02 

and regular when 𝜁 = 5.5. Topological entropy calculations for these two cases have 

been performed using Mathematica. The plots for chaotic and regular cases are 

shown, respectively, as plots given below. 

 

 

Fig.3.8(a) Topological entropy plots for chaotic evolution 𝜻 = 0.02. 
 

 
Fig.3.8(b) Topological entropy plots for chaotic evolution 𝛇 = 5.5. 
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Above plots perfectly provide ideas of complexity in the chaotic system. 
 
3.5.3 Correlation Dimensions 
 
Correlation dimension provides a measure of dimensionality of the chaotic 

attractor.  It is a very practical and efficient method as compared to other methods, 

like box counting etc. Being one of the characteristic invariants of nonlinear system 

dynamics, the correlation dimension also gives a measure of complexity for the 

underlying attractor of the system. To calculate correlation dimension, one has to 

use the statistical approach. Here, we use the method described by Martelli 

(Martelli, 2011). 

Correlation dimension provides the dimensionality of the system. Given below we 

have two plots for correlation integral data for the system for a chaotic case when ζ 

= 0.03 and for a regular case when ζ = 5.5 while keeping other parameters fixed as 

h=0.01, ζ = 0.01,  βd = 0.26,   βf =  0.5,  δd  = 0.2, δf = 0.18, σd  = 0.1, σf = 0.05 

and ϵ = 4.4, in Figure 3.9.  

 

The plot (b) of the regular case shows zero slope of the curve and zero intercept to 

y-axis; thus, the correlation dimension is zero in this case. However, plot (a) of the 

chaotic case is different. By using least square linear fit, one obtains the equation 

of the straight line approximately fitting the curve as  

Y = 0.2954 – 0.3404 x 

The intercept of this straight line on the y-axis is equal to 0.2954 ≈ 0.3. Thus, the 

correlation dimension for chaotic attractor form in this case is approximately equal 

to 0.3.   
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Fig.3.9(a) Correlation dimension for chaotic case when 𝜻 = 0.03. 

 

Fig.3.9(b) Correlation dimension for regular case when 𝜻 = 5.5. 
 

3.6 Application of indicator DLI 
 

An indicator named as Dynamic Lyapunov Index (DLI) has recently been 

introduced by Saha and Budhiraja (Saha and Budhraja, 2007). Its working ability 

to distinguish between chaotic and regular motions is tested for various discrete 

systems by Yuasa and Saha (2008), Saha and Tehri (Saha and Tehri, 2010) and 

Deleanu (Deleanu, 2011).  When applied to discretized food chain models and 

plotted after numerical simulations, it has been observed that DLI’s, form a definite 

pattern for the motion which is regular motion and for chaotic motion it shows 

randomly distributed points, (with no definite pattern). 
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Fig 3.10(a): DLI plots for chaotic evolutions. 

 
 

 

Fig.3.10(b): DLI plots for regular evolutions. 
 

3.7 Discussion 
 

The food chain system introduced by Bo Deng (Deng, 2001), has been considered 

for the study of complexity arising in the system through some potential numerical 

simulations like obtaining LCE plots, topological entropies and calculating 

correlation dimensions for regular as well as for chaotic motions. LCEs provide the 

measure of exponential divergence, topological entropy is a measure of complexity 
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and correlation dimension is a measure of dimensionality. This last one is nothing 

but fractal dimension for the chaotic set emerging during evolution. This type of 

study sheds some light on complexity in the system because nonlinearity plays a 

big role. Such investigations in food chain system also throw lights on conditions 

that whether the participating species survives in coexistence or gets extinct. 

Regularity obtained for certain set of parameters indicates the possibility of 

survival. Chaotic situations indicate uncertainty which means the possibility of 

extinction. Finally, we have used an indicator, DLI, described recently for clear 

identification of regular and chaotic evolution. 
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Chapter 4  

Dynamics of Two-Gene Andrecut-Kauffman 
System: Chaos and Complexity 

 
4.1 Introduction  

 
Mathematical equations dealing with natural and biological systems are nonlinear 

in nature and are mostly in complicated form. Nonlinearity can be defined by 

parameters involved into the system chosen for study. Behaviour of such systems 

can be understood during evolution by varying parameters under different initial 

conditions. Computers have added a lot of ease and comfort to the numerical study 

of this subject by producing many exciting and interesting results. A simple system 

evolves in simple ways but a complex or complicated system evolves in 

complicated ways and between simplicity and complexity there cannot be a 

common ground. Ian Stewart talked about this in his book “Does God play Dice ?” 

in 1990 (Stewart, 1990)  where he included many practical applications of chaos 

theory. Complex systems have features like cascading failures, far from energetic 

equilibrium, often exhibiting hysteresis, bistability may be nested, network of 

multiplicity, emergent phenomena and some more properties. All these are related 

to the nonlinearity. A systematic evolutionary description and emergence of chaos 

can be obtained in the beginning chapters of the book edited by Hao-Bai-Lin in 

1990 (Lin, 1990). Chaos and irregular phenomena may not require very 

complicated equations. During evolution, biological systems may display the 

properties like complexity and chaos. Complexity can be viewed via its systematic 

nonlinear properties and it is due to the interaction among multiple agents within 

the system. This has been shown by L M Saha in 2016 (Saha and Kumra, 2016) . 

Chaotic systems display varied forms of attractors, depending on different sets of 

parameter values. Complexity and chaos observed in a system can be well 

understood by measuring elements like Lyapunov exponents (LCEs), topological 

entropies (Bowen, 1973) correlation dimension etc. Topological entropy is a non-

negative number that provides a perfect way to measure complexity of a dynamical 

system. For a system, more topological entropy signifies more complexity. In 1965, 
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Adler, R L Konheim and A G McAndrew (Adler et al., 1965) introduced the notion 

of entropy as an invariant for continuous mappings. Actually, it measures the 

exponential growth rate of the number of distinguishable orbits as time advances. 

In 2007, Andrecut and Kaufmann (Andrecut and Kauffman, 2007) studied the 

complex dynamics of a discrete model of a two-gene system. They derived the 

discrete time equations of the system from the chemical reactions corresponding to 

the gene expression and regulation and showed that the system exhibits regular, 

chaotic and hyper-chaotic behaviour, depending on the values taken by the control 

parameters. Since complexity and chaos appear mostly in nonlinear systems, it is 

necessary to find certain measure of the quantities causing these. Positivity measure 

of Lyapunov exponents (LCEs) signifies presence of chaos (Abarbanel et al., 1992) 

and (Sylvia, 2007).Measure of topological entropy signifies the complexity 

(Baldwin and Slaminka, 1997) and the correlation dimension provides the 

dimensionality of the attractor of the system (Nagashima and Baba, 1998) and 

(Grassberger and Procaccia, 1983b) .  

While dealing with natural systems, principles of nonlinear dynamics have been 

extensively used in diverse areas of sciences. In biochemical context nonlinear 

equations are obtained from chemical reactions appearing in a two-gene model 

(Andrecut and Kauffman, 2007). Here, chemical reactions are assumed to 

correspond to gene expression and regulation.  

The studies performed in the present article deal with a two-gene Andrecut-

Kauffman model (Andrecut and Kauffman, 2007). In this 2-dimensional discrete 

system, dynamical variables describe the evolution of the concentration levels of 

transcription factor proteins. To study the characteristics of complex nature of 

evolutionary phenomena, bifurcation diagrams have been drawn by varying a 

certain parameter. Then, some numerical investigations are carried forward to 

obtain Lyapunov exponents (LCEs), topological entropies and correlation 

dimensions for different sets of parameters of the system. Results obtained are 

shown through graphics. Finally, the complex nature of evolutions has been 

discussed on the basis of results obtained through this study.   
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4.2 The Model  
 
In the present study, we consider a two-dimensional map proposed by Andrecut and 

Kaufmann (Andrecut and Kauffman, 2007). The map was used to investigate the 

dynamics of two-gene model for chemical reactions corresponding to gene 

expression and regulation. The discrete dynamical variables, denoted by xn and yn, 

describe the evolutions of the concentration levels of transcription factor proteins. 

The map is given by following pair of difference equations:  

 

 

 

                                   (1) 

 

 

With parameter values a = 25, b = 0.1, c = d = 0.18 and t = 3, one obtains four 

different fixed points with coordinates (2.30409, 2.30409), (- 2.52688, 2.44162), 

(2.44162, -2.52866), (- 2.39464, - 2.39464) and all are unstable.    

For c ¹ d, and when a = 25, b= 0.1, c = 0.18, d = 0.42, and t = 3, again, four unstable 

fixed points are obtained as (2.2832, 2.5413), (- 2.5458, 2.6566), (2.4613, - 2.7288), 

(- 2.3744, -2.61705). Therefore, for all these cases, the orbit with an initial point 

taken nearby any of the fixed points may be unstable and may be chaotic also.  

We intend to investigate certain dynamic behaviours of system (1) for cases when 

c = d and when c ¹ d for evolutions showing irregularities due to presence of chaos 

and complexity.  
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4.3 Numerical simulations 
 

4.3.1 Bifurcations  
 

Performing various numerical simulations, the dynamics of evolution have been 

investigated by obtaining bifurcation diagrams, calculating Lyapunov 

exponents, topological entropy and correlation dimensions of the system for 

different cases. For the values of control parameters within the system the 

following ranges have been proposed:  

a ∈ [0,50], c ∈ [-0.4,0.4], b = 0.1, d= 0.5, t = 3,4,5.  

 

Case 1: Taking c = d, bifurcation diagrams are drawn along the directions x and 

y, by varying c for cases t = 3, 4, 5 and certain fixed values of other parameters 

as shown below in figure 4.1.Then, plots of attractors have been obtained for 

parameters a = 25, b = 0.1, t = 3 and (i) for regular case c = d = 0.32 and (ii) for 

chaotic case c = d = 0.18 and shown in figures 4.2 below. In each case when t = 

3, 4, 5, bifurcations show period doubling leading to chaos and then to regularity. 

Also, bistability and folding nature of phenomena are appearing here. 

 

 

 

Fig.4.1(a): The bifurcation scenarios for parameters c = d , t = 3, a = 25, b = 
0.1 & 0 £ c £ 0.5.  
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Fig.4.1(b): The bifurcation scenarios for parameters c = d, t = 4, a = 35, b = 
0.1 and 0 £ c £ 0.65. 

 

Fig.4.1(c): The bifurcation scenarios for parameters c = d, t = 5, a = 25, b = 
0.1 and 0 £ c £ 0.5. 

 
 
Case 2: Taking c ≠ d, bifurcation diagrams are drawn along the directions x and y. 
 
 

 
Fig.4.1(d): The bifurcations for the case c≠d,t=3, a = 25, b = 0.1 & d = 0.20. 
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Fig.4.1(e): The bifurcations for the case c≠d,t=4, a = 25, b = 0.1 & d = 0.30. 

 
 
 

 
Fig.4.1(f): The bifurcations for the case c≠d ,t=5, a = 25, b = 0.1 & d = 0.20. 
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4.3.2 Attractors 
 

 

Fig.4.2(a): Time series plot for regular case with a = 25, b = 0.1, t = 3 & c = 
d = 0.32. 

 

 

Fig.4.2(b): Phase plane plot for regular case with a = 25, b = 0.1, t = 3 & c = 
d = 0.32. 
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Fig.4.2(c): Lyapunov exponents for regular case with a = 25, b = 0.1, t = 3 
& c = d = 0.32. 

 

 

 

 

Fig.4.2(d): Time series plot for chaotic case with a = 25, b = 0.1, t = 3 & c = 
d = 0.18. 
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Fig.4.2(e): Phase plane plot for chaotic case with a = 25, b = 0.1, t = 3 & c = 
d = 0.18. 

 

 

Fig.4.2(f): Lyapunov exponents for chaotic case with a = 25, b = 0.1, t = 3 & 
c = d = 0.18. 

 
4.3.2 Lyapunov Exponents and Topological Entropies 
 
For chaotic evolution, when a = 25, b = 0.1, t = 3, c = d = 0.18, Lyapunov 

exponents are obtained and their plots are shown in Fig.4.3. Numerical 

investigations are further proceeded for the calculation of topological entropies. 

In Fig.4.4, plots of topological entropies are presented for t = 3, 4, 5 and for 

different ranges of parameter c. Analysis of these plots, gives an impression that 

for the case t = 3, system shows enough complexity in the range 0.05 ≤ c ≤ 0.23. 
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For the case t = 4, the system shows high complexity in the range 0 ≤ c ≤ 0.22 

and in case t = 5, high complexity appears in the range 0 ≤ c ≤ 0.44. 

 
 
 

  
Fig.4.3(a): First plot for Lyapunov exponents for chaotic evolution with a = 
25, b = 0.1, t = 3, c = d = 0.18. 

 

 
 

Fig.4.3(b): Second plot for Lyapunov exponents for chaotic evolution with 
a = 25, b = 0.1, t = 3, c = d = 0.18. 
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Fig.4.3(c): LCE’s for t=3, a = 25, b = 0.1, c = 0.28, d = 0.12. 

 

 
Fig.4.3(d): LCE’s for t=4, a = 25, b = 0.1, c = 0.2, d = 0.15. 

 
 

 
Fig.4.3(e): LCE’s for t=5, a = 25, b = 0.1, c = 0.2, d = 0.15. 
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4.3.3 Topological Entropy 
 
The topological entropy is shown via following graphics in figure 4.4. 
 
 
 

 
Fig.4.4(a): Topological Entropy when c = d ,t = 3, a = 25, b = 0.1 & 0 ≤ c 
≤0.5. 

 

 
Fig.4.4(b): Topological Entropy when c = d, t = 4, a = 35, b = 0.1 & 0 ≤ c ≤ 
0.65. 
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Fig.4.4(c): Topological Entropy when c = d, t = 5, a = 25, b = 0.1 & 0 ≤c 
≤0.8. 

 

 
 

Fig.4.4(d): Topological Entropy when t=3, a = 25, b = 0.1, d = 0.15. 
 

 

Fig.4.4(e): Topological Entropy when t=4, a = 25, b = 0.1, d = 0.15. 
 



 83 

 

Fig.4.4(f): Topological Entropy when t=5, a = 25, b = 0.1, d = 0.15. 
 

 

 
 

When parameters c and d both were allowed to vary, one gets 3D plots for 

topological entropies as shown here in Fig.4.5. 

 
 
 

 
Fig.4.5(a): 3-D plot of Topological Entropy for t=3, a = 25, b = 0.1, 0 ≤c ≤ 
0.5   & 0 ≤ d ≤ 0.5. 

 
 
. 
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Fig.4.5(b): 3-D plot of Topological Entropy for t=4, a = 25, b = 0.1, 0 ≤c ≤ 
0.5 & 0 ≤ d ≤ 0.5. 

 
. 
 
 
 
 

 
Fig.4.5(c): 3-D plot of Topological Entropy for t=5, a = 25, b = 0.1, 0 ≤c ≤ 
0.5   & 0 ≤ d ≤ 0.5. 
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4.3.4 Correlation Dimensions 
 

Correlation dimension gives the measure of dimensionality. Chaotic evolutions in 

dynamical systems are characterized by a chaotic set, “strange attractor”, which has 

fractal structure. Being one of the characteristic invariants of nonlinear system 

dynamics, the correlation dimension actually gives a measure of complexity for the 

underlying attractor of the system. A statistical method can be used to determine 

correlation dimension. It is an efficient and practical method in comparison to other 

methods, like box counting etc. The procedure to obtain correlation dimension 

follows from some steps calculations performed in a previous study (Grassberger 

and Procaccia, 1983b, Grassberger and Procaccia, 1983a). We have also discussed 

these steps in detail in the chapter 2 of this thesis. 

Extending further the numerical study, correlation dimensions of system (1) have 

been calculated for various chaotic cases discussed above. For this the method used 

is that of Martelli with Mathematica codes (Nagashima and Baba, 1998). In brief, 

the method can be described as follows: 

Consider an orbit O(x1) = {x1, x2, x3, x4, . . ….}, of a map f: U → U, where U is an 

open bounded set in Rn. To compute correlation dimension of O(x1), for a given 

positive real number r, we form the correlation integral,  

,  (2) 

where   

   , 

is the unit-step function, (Heaviside function). The summation indicates the number 

of pairs of vectors closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures the density 

of pair of distinct vectors xi and xj that are closer to r.  

The correlation dimension Dc  of O(x1) is then defined as 
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To obtain Dc, log C(r) is plotted against log r, shown in Fig.4.6, and then we find a 

straight line fitted to this curve. The intercept of this straight line on y-axis provides 

the value of the correlation dimension Dc. 

Computation of correlation dimension has been carried out for all the cases 

described in this article for different set of values of parameters as shown in the 

following table. 

 
 

 
 

Fig.4.6: Plot of correlation integral curve for the case t = 3. Parameters 
values are a = 25, b = 0.1, c = 0.28, d = 0.12. 

 
 
 

Cases (t) / 
Parameters 

a b C D Dimension 

t = 3 25 0.1 0.18 0.18 3,81869 
t = 4 25 0.1 0.18 0.18 3.05258 
t = 5 25 0.1 0.18 0.18 3.11754 
t = 3 25 0.1 0.28 0.12 3.16201 
t = 4 25 0.1 0.28 0.12 3.96724 
t = 5 25 0.1 0.28 0.12 4.05859 
t = 3 35 0.1 0.2 0.2 3.8041 
t = 4 35 0.1 0.2 0.2 3.4164 
t = 5 35 0.1 0.2 0.2 4.73368 

 
Table 4.1: Numerical values of correlation dimensions for different values of t. 
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4.4 Discussion 
 

Two gene Andrecut - Kaufmann system has been studied carefully to understand 

chaotic phenomena during its evolution together with complexities present in the 

system. Investigation is made for cases t = 3, 4, 5 only but one can extend it for 

cases t ≥ 6 also. Bifurcation plots showed here indicate the phenomena of period 

doubling and bistability in all these cases. Chaotic evolutions with periodic 

windows are clearly visible. Presence of complexity in the system can be observed 

by plots of topological entropies. Variations of topological entropies can be 

observed in 3D plots shown in figures. Numerical values of correlation dimensions, 

shown in Table 4.1, provide approximate dimensionality of chaotic attractors. 
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Chapter 5  

Complexities in a Plant-Herbivore Model 
 
5.1 Introduction 
 
The beauty of nature surrounding us lies in its complexity. It is indeed very 

interesting to study this complexity and infer exciting results from calculations. 

Complex systems have features like cascading failures, far from energetic 

equilibrium, often exhibit hysteresis, bistability may be nested, networks of 

multiplicity, emergent phenomena and some more properties. Complexity can be 

viewed via its systematic nonlinear properties and it is due to the interaction among 

multiple agents within the system. A complex system is made up of a large number 

of parts that interact in a non-simple way and complexity is the property of the 

relationship between a system and various representations of the system. Due to its 

nonlinear structure, any biological systems may display the properties like 

complexity and chaos. Elaborate descriptions on complexity can be viewed from 

some well written articles (Simon, 1962, Weaver, 1948). In 2001, S. M. Manson 

wrote “Simplifying complexity: a review of complexity theory” where he explained 

the concepts and principles of complexity in detail (Manson, 2001). Complexity 

and chaos observed in a system can be well understood by measuring elements like 

Lyapunov exponents (LCEs), topological entropies, correlation dimension etc. 

Topological entropy, a non-negative number, provides a perfect way to measure 

complexity of a dynamical system. For a system, more topological entropy signifies 

more complexity. Actually, it measures the exponential growth rate of the number 

of distinguishable orbits as time advances (Adler et al., 1965, Bowen, 1973). 

Positivity measure of Lyapunov exponents (LCEs) signifies presence of chaos 

(Benettin et al., 1980, Abarbanel et al., 1992). Measure of topological entropy 

signifies the complexity (Adler et al., 1965, Balmforth et al., 1994, Baldwin and 

Slaminka, 1997) and the correlation dimension provides the dimensionality of the 

attractor of the system (Grassberger and Procaccia, 1983a). 
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Plant-herbivore interactions have a very important role in our environment. Since 

plants and associated herbivores constitute more than half of the eukaryotic species 

inhabiting our world, the understanding of this relationship between animals and 

plants is extremely important for land management. The removal of a particular 

plant species or group may result in the disappearance of many animals from an 

area. This argument provides a strong basis for studying animal plant relationships 

and infer results for future. Plant-herbivore model is a generalization of the host-

parasite and Nicholson-Bailey models, studied under various assumptions and 

modifications (Harper, 1977, Antonovics and Levin, 1980). More extensive studies 

have been carried out recently on plant-herbivore model by formulating a suitable 

mathematical model (Abbott and Dwyer, 2007, Kang et al., 2008) and some 

interesting facts on evolutionary behavior have been pointed there.  

The present work is based on the non-dimensional mathematical model proposed 

in a recent article (Abbott and Dwyer, 2007). The objectives are to study the 

deterministic model for chaotic evolution and effect on evolution due to 

complexities presence in the system. Measures like Lyapunov exponents, 

topological entropies and correlation dimensions (Saha and Kumra, 2016, Saha et 

al., 2016) have been used to discuss the evolutionary behavior of the system. In the 

processes of study, we have discussed the stability criteria of the steady state 

solution. This is done by drawing of bifurcation diagrams for the model by varying 

a parameter while keeping others constant and discussion of certain properties of 

the motion followed by the calculation of LCEs, topological entropies, correlation 

dimensions and their graphical representation. 

 
5.2 The Model 
 
The discrete 2-D model is controlled by two parameters “r”, the nutrient uptake rate 

of the plant, and “a”, the amount of leaves eaten by the herbivore. Mathematical 

analysis and simulations of this model provide us with biological insights that may 

be used to devise control strategies to regulate the population of the herbivore. We 

are focusing our study on a host parasite model where 𝑃  and 𝐻  are the population 

biomasses of the host (a plant) and the parasite (a herbivore) in successive 
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generations 𝑛 and 𝑛 + 1 respectively, (Kang, Armbruster and Kuang,2008). We 

consider the following non-dimensionalized system : 

 

xn+1 =   

                                     (1) 

 

We model the plant and herbivore dynamics through their biomass changes. We 

assume that soil acts as an unlimited reservoir for biomass growth. A herbivore in 

model (1) has a one year life cycle. Without the herbivore, the biomass of the plant 

population follows the dynamics of the Ricker model with a constant growth rate 𝑟 

and plant carrying capacity Pmax. 

The Ricker dynamics determines the amount of new leaves available for 

consumption for the herbivore. The parameter 𝑎 is a constant that correlates the 

total amount of biomass that an herbivore consumes. To obtain non-dimensional 

form of the system, we set it as: 

 

𝑥5 =
%û

%&'(
 and 𝑦5 =

ãû
%&'(

 . 

 
In the section below, we have done numerical simulations like finding attractors 

and bifurcation diagrams. We have varied ‘r’ and ‘a’ over different ranges and 

intervals.   

nn ya)x1(r
n ex --

)e1(exy nn ya)x1(r
n1n

--
+ -=



 91 

5.3 Numerical Simulations 
 

5.3.1 Bifurcations  
 
The Bifurcation diagrams are displayed below in Fig.5.1 

  

Fig.5.1(a) Bifurcations on x-axis for 1.0≤a≤6.0. 
 

 

Fig.5.1(b) Bifurcations on y-axis for 1.0≤a≤6.0. 
 

 

Fig.5.1(c) Bifurcations on x-axis for 2.5≤a≤5.5. 
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Fig.5.1(d) Bifurcations on y-axis for 2.5≤a≤5.5. 
 

 

Here we have found the bifurcations over r. 

 

 

Fig.5.1(e) Bifurcations on x-axis for 2.5≤r≤4.5. 
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Fig.5.1(f) Bifurcations on y-axis for 2.5≤r≤4.5. 
 

 

Fig.5.1(g) Bifurcations on x-axis for 3.0 ≤r ≤3.5. 
 

 

 

 

Fig.5.1(h) Bifurcations on y-axis for 3.0 ≤r ≤ 3.5.  
 

We have performed calculations and obtained bifurcations displaying interesting 

features of evolution, shown in Fig.5.2. To obtain bifurcation diagrams of system 

(1), first we fixed a and varied r and then we fixed r and varied a. Following cases 

have been considered:   

(a) a = 1 and 1.8 £ r £ 3.5 & 3 £ r £ 3.3, one finds period doubling type bifurcations 

leading to chaos. Also, it has been observed a 3–periodic windows following again 
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a period doubling bifurcation has appeared in the figure in the close range of r 

(Fig.5.2(a)). 

 (b) a = 1.2 and 2.5 £ r £ 3.5, the bifurcations along x- & y- axes, are shown in 

Fig.5.2(b). These figures show very unusual and significantly different type of 

bifurcations than the earlier case.  

(c) In the third case, we have varied a and fixed r; r = 2.5 and 1.3 £ a £ 2.5. 

These diagrams clearly show the presence of chaos and complexity in the system. 

The middle row bifurcations are characteristic in the sense because one observes 

behavior: from period one to chaos, then period 5, then chaos and so on. The lowest 

row figures, again, display complicated form of bifurcation.    

 

 

   
Fig.5.2(a) Bifurcations along x-axis for a = 1 and 1.8 £ r £ 3.5 & 3 £ r £ 3.3. 

 

Fig.5.2(b) Bifurcations along x and y axis for a = 1.2 and 2.5 £ r £ 3.5. 
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Fig.5.2(c) Bifurcations along x and y axis for r = 2.5 and 1.3 £ a £ 2.5. 
 

 
 

5.3.2 Attractors 
 
The regular as well as chaotic attractors have been obtained by varying value of 

parameter a. Qualitative change in structure of attractors, from regular to chaotic, 

have been observed during these processes. We have fixed ‘r’ as r = 2.8 and varied 

‘a’ from a = 1.28 to 1.64. Initially, we have obtained a point attractor which, as ‘a’ 

increases, changes into closed curves, limit cycle attractors through Hopf 

bifurcation Fig. 5.3(a). Further increase in a, results into dense chaotic attractors, 

Fig. 5.3(b). Within the dense chaotic one finds the phenomena of bistability, folding 

and other complex structures, Fig. 5.4. 
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Fig 5.3 (a) Regular and chaotic attractors of map (1) for r = 2.8 and 
different values of a. 

 
Attractors are formed through Hopf bifurcation and with initial condition x0 = 

0.2, y0 = 0.78.   

 

 
Fig. 5.3(b): Qualitative change in structure of chaotic attractors when r = 
2.8 and a increases from a =1.66 to 3.0. 

 



 97 

 
 

 
Fig. 5.4: Chaotic attractor of system (1) for r = 2.8 and a =1.64. 

 

5.3.3 Lyapunov Exponents (LCEs) 
 

Lyapunov exponents provide measure of chaos. Lyapunov exponents or Lyapunov 

characteristic exponents, named after the Russian engineer Alexander M. Lyapunov 

(Lyapunov, 1992), are quantities that characterize the rate of separation of 

trajectories that initiated infinitesimally close to each other (Lynch, 2007, Leonov 

and Kuznetsov, 2007, Grassberger and Procaccia, 1983b). Quantitatively, 

divergence of two trajectories in phase space with initial separation δx0 and 

separation after nth iterations δxn  can be related, (provided that the divergence can 

be treated within the linearized approximation), by 

       or by            (2)                            

where λ > 0 is the Lyapunov exponent. The right side of (2) stands for continuous 

system.  The system described by a map f be regular as long as λ ≤ 0 and chaotic 

when λ > 0. This condition, known as sensitive dependence on initial conditions, is 

one of the few universally agreed-upon conditions defining chaos. Fixing r = 2.8, 

|0xδ|
nλe|nxδ| » (0)δxtλe(t)δx »
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we have calculated maximum of LCEs at each iteration for our model and plotted 

them in Fig.5. 5.  The figure 5.5(a) shows all LCEs are negative and so the evolution 

is regular. But, in the Fig.5.5(b) as all LCEs positive and so in this case the evolution 

is chaotic. 

 

 

 

Fig.5.5(a) Regular motion with negative LCE’s. 
 

 

 

Fig.5.5: (b) Chaotic motion with positive LCE’s. 
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5.3.4 Topological Entropies 
 

The topological entropy discussed here is actually Kolmogorov-Sini entropy 

(Nagashima and Baba, 1998). As stated in the introduction, topological entropy 

provides certain measure of complexity and so, it is a simple indicator of 

complexity. For this system, numerical simulations have been performed to obtain 

the topological entropies. As shown in Fig. 5.6(a), for fixed value of parameter r = 

2.8 and 1.0 ≤ a ≤4.5, the system has enough positive entropy for 1.0≤ a ≤3.3 and 

even more topological entropy in 3.3 < a ≤4.5. Also, a 3-D plot of topological 

entropy is obtained and shown in Fig. 5.6(b) by varying both a and r; 1.5 ≤ a ≤ 4.0 

& 1.0 ≤ r ≤3.0. 

 

 

 

Fig. 5.6(a): Plot of topological entropy by fixing r = 2.8 and varying a, 1.0 ≤ 
a ≤4.5. 
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Fig. 5.6(b): 3-D plot of topological entropy for 1.5 ≤ a ≤ 4.0 & 1.0 ≤ r ≤ 3.0. 

 

5.3.5 Correlation Dimension 
 
 Correlation dimension provides the dimensionality of the evolving system 

(Martelli, 2011, Grassberger and Procaccia, 1983a, Grassberger and Procaccia, 

1983b). It is a kind of fractal dimension and its numerical value is always non-

integer. Being one of the characteristic invariants of nonlinear system dynamics, 

the correlation dimension actually gives a measure of complexity for the underlying 

attractor of the system. The procedure to calculate correlation dimension is 

statistical and that is what we have followed here (Saha and Das, 2013). We have 

explained it in detail in chapter 2. 
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Fig.5.7: Plot of correlation curve for the chaotic plant-herbivore model 
with r = 2.8 and a = 1.64. 

 
When we use the least square linear fit to the data of correlation integral, we 

obtain the equation of the straight line fitting the data as 

Y = 1.03089 – 0.642896 x 

The y-intercept of straight line is 1.03089 

So, the correlation dimension is obtained approximately as Dc ≈ 1.03. 
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5.4 Discussion 
 

Here we have worked upon a general plant-herbivore model, partly motivated by 

the dynamics of a gypsy moth infestation through biomass transfer from plants to 

the gypsy moth. The discrete 2-D model is controlled by the two parameters ‘r’, the 

nutrient uptake rate of the plant while ‘a’ is the amount of leaves eaten by the 

herbivore 

 

We have studied the nonlinear behavior together with certain measure for chaotic 

evolution. Bifurcation diagrams of this model have been drawn by varying both the 

parameters a and r. These figures provide information regarding evolution with 

stable solutions as well as chaotic nature of nonlinear properties and limitation for 

parameter space. Regular and chaotic attractors have been drawn. Mathematical 

calculations and analyses of this model provide us with biological insights that may 

be used to devise control strategies to regulate the population of the herbivore. 

 

Since the herbivore movements are random, it is more appropriate to study a 

stochastic model instead of deterministic one. Such realistic plant-herbivore system 

will be the objective of our research in near future. 
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Chapter 6  

Dynamics of evolution of Mature Population  
 

6.1 Introduction 
 

Usually biological systems are complex and multicomponent. They are spatially 

structured and their individual elements possess individual properties. Such 

complexity also effects the system significantly during evolution. Natural processes 

tend to vary over time and space, as well as between the species. In recent years 

there has been a great emphasis on three concerning phrases: nonlinear dynamics, 

chaos and complexity. This interest has led to a large number of popular-science 

articles covering models and graphics to explain chaos, regularity and chaos control 

in certain cases. Henri Poincaré(1854–1912), a late-nineteenth century French 

mathematician  was the first one to extensively study topology and topological 

systems. All-natural systems exhibit massive diversity. Complex systems are 

characterized by an internal structure which is built by numerous and varied 

processes, subsystems and interconnections. Systems featured by complexity 

display a number of properties such as uncertainty, interactions at different levels, 

self-organization and nonlinear feedback. Due to its nonlinear structure such 

systems may display the properties like complexity and chaos. Elaborate 

descriptions on complexity can be viewed from some well written articles (Weaver, 

1948, Simon, 1962, Manson, 2001). 

A chaotic system can be better understood by measuring components like 

Lyapunov exponents (LCEs), topological entropies, correlation dimension etc. 

Topological entropy, a non-negative number, provides a perfect way to measure 

complexity of a dynamical system. The concept of topological entropy was first 

introduced by Adler, Konhelm and McAndrew in the 1960s. For a system, more 

topological entropy signifies more complexity. Topological entropy measures the 

evolution of distinguishable orbits over time, thereby providing an idea of how 

complex the orbit structure of a system is (Adler et al., 1965, Bowen, 

1973).Topological entropy describes the rate of mixing of a dynamical system. It is 

related to Lyapunov exponents both through the dependence of rate and through the 
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ergodicity. For a system having non-zero topological entropy, the rate of mixing 

must be exponential which is comparable to Lyapunov exponents. Though such 

exponentiality is not relative to time, rather to the number of discrete steps through 

which the system has evolved. Positivity of Lyapunov exponent and topological 

entropy are characteristic of chaos. The book by Nagashima and Baba (Nagashima 

and Baba, 1998) gives a very clear definition of entropy. 

Another very important measure of chaos is LCEs. LCEs provide the rate of 

divergence of orbits which initially start very close to each other. Positive measure 

of Lyapunov exponents (LCEs) signifies presence of chaos (Benettin et al., 1980, 

Abarbanel et al., 1992). 

While working with population dynamics in many models the increases in 

population due to birth are assumed to be time-independent, but that is not always 

the case. In many cases some species reproduce only during a single period of the 

year. We have worked with a single-species model with stage structure for the 

dynamics in a wild animal population for which births occur in a single pulse once 

per time period. This model was proposed by (Tang and Chen, 2002). We have tried 

to obtain bifurcations, LCE’s and entropy to analyze and measure chaos in the 

system. The sequence of bifurcations, leading to chaotic dynamics shows that the 

dynamical behaviors of the single species model with birth pulses are very complex 

and chaotic. 

6.2 The Model 
 

It is assumed that population size changes according to population growth ratio 

equation in absence of stage structure:  

𝑁 = 𝐵(𝑁)𝑁 − 𝑑𝑁´       (1) 

where d>0 is the death rate constant, and B(N)N is a birth rate function with B(N) 

satisfying the following basic assumptions for N ∈ (0,∞). 

• B(N) > 0. 

• B(N) is continuously differentiable with B`(N) < 0. 

• B(0+) > d > B(∞).  
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Later it is assumed that the single species population in model (1) has stage 

structure, and that the population N is divided into immature and mature classes, 

with the size of each class given by x(t)and y(t), respectively, so that N(t)= x(t)+y(t), 

and only the mature population can reproduce. The model has been discretized 

leading to the following equations. 

 

                                                (2) 

6.3 Numerical Simulations 
 

Performing various numerical simulations, the dynamics of evolution have been 

investigated by obtaining bifurcation diagrams, calculating Lyapunov exponents, 

topological entropy and correlation dimensions of the system for different cases. 

6.3.1 Bifurcations 
 

As we have already discussed in the previous chapters that bifurcations play a very 

important role in studying the dynamics of any system. We have found bifurcations 

of this system which are shown below. 

 
Fig.6.1: Bifurcation diagrams along x- and y- axes of system (2) for 0 ≤ b ≤ 
600. when d= 0.7 and δ = 0.5 in fig.6.1 showing period doubling route to 
chaos. 

  

])yx(ed[δ
nn

)dδ(
n1n

nn
d

e])e1(xy[bexx ++--+-
+

-

-++=

n
d

n
δd

1n yex)e(1ey ---
+ +-=



 106 

6.3.2 Periodic attractors 
 

 

Fig. 6.2: Periodic attractors of system (2) with periods 1, 2, 4, 8 for 
different values of parameter b. Other parameters are d= 0.7 and δ = 0.5. 
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6.3.3 Chaotic Attractors 

 

Fig.6.3: Chaotic time series plots, (upper row), and plots of chaotic 
attractors, (lower row) are shown here.  The other parameters are taken as 
d= 0.7 and δ = 0.5. 

 

6.3.4 LCEs and Topological Entropy 
 

Lyapunov exponents can be considered as generalizations of the eigenvalues of 

steady-state and limit-cycle solutions to differential equations. The eigenvalues of 

a limit cycle characterize the rate at which nearby trajectories converge or diverge 

from the cycle. The Lyapunov exponents do the same thing, but for arbitrary 

trajectories, not just the special ones that are periodic. Calculation of Lyapunov 

exponents involves (for nonlinear systems) numerical integration of the underlying 

differential equations of motion, together with their associated equations of 

variation. The topological entropy measures the growth of the number of periodic 

points. Similar to Lyapunov exponent, it also measures how "complex" the map is. 

In communication theory, a measure of uncertainty or randomness is a factor that 

is related to information. The greater the entropy, the greater the uncertainty, and 

the greater the amount of information that could be transmitted. However, once 
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received, information represents a decrease in uncertainty. The flip of a fair coin 

yields one bit of entropy with 0 or 1 representing heads or tails. A binary bit with 

equiprobability of a 0 or 1 is random. Also, the higher the probability of an event 

or a state, the lower the entropy. Back in 1948, Claude Shannon helped establishing 

the theoretical basis for the development of information and communication theory 

with his equation of entropy. 

A second intuitive interpretation of entropy is as a measure of the disorder in a 

system. There are interesting examples of systems that appear to develop more 

order as their entropy (and temperature) rises. These are systems where adding 

order of one, visible type (say, crystalline or orientationally order) allows increased 

disorder of another type (say, vibrational disorder). Entropy is a precise measure of 

disorder but is not the only possible or useful measure. Topological entropy is a 

nonnegative number which measures the complexity of the system. Roughly, it 

measures the exponential growth rate of the number of distinguishable orbits as the 

time advances. 

To name a periodic orbit, we need to choose one of its cyclic permutations only. 

The number of distinct periodic orbits grow rapidly with the length of the period. 

A simple indicator of the complexity of a dynamical system is its topological 

entropy. In the one-dimensional setting, the topological entropy is a measure of the 

growth of the number of periodic cycles as a function of the symbol string length 

(period). 
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The LCEs for the given system are shown below: 
 

 

 

 

 
Fig.6.4(a) LCE’s for δ=0.5, b=540 & d=0.7. 
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Fig.6.4(b): LCE’s for δ=0.5, b=480 & d=0,7. 
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Fig.6.4(c): LCE’s for δ=0.5, b=600 & d=0,7. 
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Fig.6.4(d): LCE’s for δ=0.5, b=330 & d=0,7. 

 
Measure theoretic entropy, which is also called the Kolmogorov—Sinai invariant, 

was defined for measure preserving transformations of probability measure spaces. 

The concept of topological entropy was first introduced by Adler, Konhelm and 

McAndrew in the 1960s.  

For a system having non-zero topological entropy, the rate of mixing must be 

exponential which is comparable to Lyapunov exponents. Though such 
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exponentiality is not relative to time, rather to the number of discrete steps through 

which the system has evolved. Positivity of Lyapunov exponent and topological 

entropy are characteristic of chaos. The graphics for Topological Entropy are shown 

below: 

 

 

Fig.6.5: Plots of topological entropies are presented with d= 0.7 and δ = 0.5 
and 300 ≤ b≤ 550 and 440 ≤ b≤ 460. 

6.3.5 Correlation dimension 
 

Correlation dimension provides the dimensionality of the evolving chaotic attractor. 

It is a kind of fractal dimension and its numerical value is always non-integer. Being 

one of the characteristic invariants of nonlinear system dynamics, the correlation 

dimension actually gives a measure of complexity of the underlying attractor of the 

system. The procedure to calculate correlation dimension that we have followed 

here is statistical (Martelli,1999). 
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Fig.6.6: Plot of correlation integral curve for d= 0.7, b = 540 and δ = 0.5 
 
When we use the least square linear fit to the data of correlation integral, we 

obtain the equation of the straight line fitting the data as 

Y = 2.4774 – 01.23719 x 

The y-intercept of straight line is 2.4774   

Thus, the correlation dimension is obtained approximately as Dc≈2.45. 

 

6.4 Discussion 
 

Complexity and chaotic evolutionary motion have been discussed for discrete 

mature population model. Bifurcation diagrams, Fig.6.1, show the system evolves 

through a period doubling root to chaos. Measures of complexity; such as Lyapunov 

exponents, topological entropies, correlation dimension have been calculated and 

shown through figures, Fig.6.3 – Fig.6.6. Plots of LCEs and topological entropies 

show clearly the complexity nature of the system. The correlation dimension for 

the chaotic attractor when parameters are d= 0.7, b = 540 and δ = 0.5, is obtained 

approximately as, Dc ≈ 2.45. 
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Chapter 7   

Summary and scope in future  
 

7.1 Chapter wise summary  

Chapter 1 includes the basic concepts and definitions related to the work done in 

the present. We have tried to build a strong base and foundation for studying non-

linear dynamics by explaining all the needed definitions and fundamental concepts. 

Chapter 2 illustrates the methodology used which includes Bifurcations, LCEs, 

Topological entropy and correlation dimension. These all are the measures of chaos 

in a system. A deep understanding of these measures is a must to understand the 

concept of chaos or to measure chaos in a system or in comparing different chaotic 

systems. We have also described some newly discovered chaos indicators like FLI, 

SALI and DLI. For all calculations, we have used the MATHEMATICA software. 

Chapter 3 includes the complexity measure in a simple type food chain system that 

has been investigated both analytically and numerically. In Ecological systems, 

food webs or food chains are constituted of several layers such that the consumers 

which eat from the bottom resource layer are the prey of another predator. This is 

due to interdependence of species within the system. So, the evolutionary dynamics 

of food chain webs are of complex nature and their dynamics are highly interesting. 

Small variations of parameters of the system show very divergent results. Models 

describing food chain can be obtained in the form of a set of ordinary differential 

equations or as a set of discrete form of equations. These models are obtained by 

observing the group behaviour of involving species, e.g. functional group 

behaviour.  

We have worked with a model introduced by Deng. Regular and chaotic motions 

have been observed for certain sets of values of a parameter of the system. For more 

detailed study, the continuous model of food chain has been transformed into 

discrete model by using Euler’s method.  
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Various measurable quantities for emergence of chaos, like Lyapunov exponents, 

topological entropies, correlation dimensions, have been numerically calculated 

and represented through plots. Finally, the chaos indicator, named Dynamic 

Lyapunov Indicator (DLI), has been used to identify clearly the chaotic and regular 

motion.  

In Chapter 4 we have talked about the evolutionary dynamics of a two-gene model 

for chemical reactions corresponding to gene expression and regulation. The studies 

performed here deal with a two-gene Andrecut-Kauffman model. In this two-

dimensional discrete system, dynamical variables describe the evolution of the 

concentration levels of transcription factor proteins.  

We intended to investigate certain dynamic behaviors of the system for evolution 

showing irregularities due to presence of chaos and complexity.  To study the 

characteristics of complex nature of evolutionary phenomena, bifurcation diagrams 

have been drawn by varying a certain parameter. Then numerical investigations are 

performed to obtain Lyapunov exponents (LCEs), topological entropies and 

correlation dimensions for different sets of parameters of the system. Results 

obtained are shown through graphics. Finally, the complex nature of evolutions has 

been discussed on the basis of results obtained through this study.  

Chapter 5 talks about a simple host-parasite type model that has been considered to 

study the interaction of plants and herbivores. Plant-herbivore interactions have a 

very important role in our environment. Since plants and associated herbivores 

constitute more than half of the eukaryotic species inhabiting our world, the 

understanding of this relationship between animals and plants is extremely 

important for land management. The removal of a particular plant species or group 

may result in the disappearance of many animals from an area. This argument 

provides a strong basis for studying animal plant relationships and infer results for 

future.  

Plant-herbivore model is a generalization of the host-parasite and Nicholson-Bailey 

models, studied under various assumptions and modification. More extensive 

studies have been carried out recently on Plant-herbivore model by formulating a 
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suitable mathematical model and some interesting outcomes on the evolutionary 

behavior have been pointed there. 

Perceptive bifurcation diagrams, which give insightful results, have been presented 

here showing chaos and complexity in the system during evolution. Measure of 

complexity and chaos in the system is explained by performing numerical 

calculations and obtaining Lyapunov exponents, topological entropies and 

correlation dimension. Results are displayed through interesting graphics.   

 

Chapter 6 talks about a stage-structured predator-prey model with impulses, that is 

investigated. It is a known fact that the discrete nonlinear age and stage-structured 

population models serve as great tools for studying the dynamics of various 

ecological populations. Such models contain species which may possess diverse 

life histories. In this work, we worked upon a single-species model with stage 

structure for the dynamics in a wild animal population for which births occur in a 

single pulse once per time period. 

 

7.2 Future Outlook 

In future, I would like to extend my studies to problems relating to evolution of 

other biological species and to problems on various types of epidemics. With 

similar as well as some new procedures applicable to stochastic and deterministic 

models, one can derive many results which are interesting and potentially useful. 

Statistical measures like probability, significance of variance etc. can be used in the 

extended study. My planning is also to develop better techniques and codes of 

software, (e.g. MATHEMATICA), which provide opportunity for more detailed 

analysis. Applications of chaos theory are widespread across biology, chemistry, 

physics, economics, mathematics and among many other fields. Often, systems 

with a large number of coupled variables exhibit chaotic behaviour, including 

weather systems, job markets, population dynamics and celestial mechanics. So, it 

will be a good idea to work with some more models with an attempt to do some 

inter-disciplinary research where we can merge fields like Physics, Economics, 

Biology etc. to formulate a model and further study it for chaos. 
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 My future aim of further study will intend in these areas. We might also work in 

the direction of generalized modelling where we can use our generalized results to 

compare a few systems, their stabilities and chaoticity. It is a universal approach 

for investigating dynamics in nonlinear systems. In these models the processes 

under observation are not restricted to specific functional forms. That is the reason 

that a single generalized model can describe systems which share a similar 

structure. Even though the concept of generality is there, still it helps us to study 

the dynamical properties of models more efficiently in the framework of local 

bifurcation theory.  

The success, which will be achieved in future study, depends on how accurately 

and appropriately the Mathematical models will be formulated and how accurately 

the numerical simulations will be performed. 
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